Feature-based Object Oriented M odelling (FOOM):
| mplementation of a Processto Extract and Extend
Softwar e Product Line Architectures

by Patrick J. Tierney, B. Sc. Eng., P. Eng.

A Thesis Submitted to
the Faculty of Graduate Studies and Research
in partial fulfilment of
the requirements for the degree of

M aster of Science
Information and Systems Science

Faculty of Engineering
Department of Systems and Computer Engineering
Carleton University
Ottawa, Ontario, Canada, K1S 5B6
August 2002
©2002, Patrick J. Tierney

The undersigned recommend to the Faculty of Graduate
Studies and Research acceptance of the thesis

Feature-based Object-Oriented Modelling (FOOM):
Implementation of a Processto Extract and Extend
Software Product Line Architectures

submitted by
Patrick J. Tierney, B. Sc. Eng., P. Eng.
in partial fulfilment of the requirements for
the degree of

Master of Science
Information and Systems Science

Chair, Department of Systems
and Computer Engineering

Thesis Supervisor

Carleton University
August 2002

ABSTRACT

Using a product line approach to software development and evolution requires much more
than areuse program: it requires the implementation of a common architecture across all
members of the product family. FOOM represents a synthesis of the FODA (Feature
Oriented Domain Analysis) , the Horseshoe model, the Unified software Development
Process and the Unified Modelling Language (UML). It focuses on: identifying
user-driven features throughout a product line's architecture, organizing the architectural
assets to lend themselves to substantial reuse, and, instantiating multiple products from a

single architecture.

DEDICATION

Thiswork is dedicated to the memory of my son, Mark Daniel (1981-1983), whose brief
time with us was filled with wonder and excitement as he discovered the world around
him. His legacy has inspired me to look at each morning as a new beginning, to live each
day to the fullest, to learn from al of life's experiences and to be at peace with the world

as each day closes.

ACKNOWLEDGEMENTS

To my wife, and life partner for nearly 30 years, Cassie Kelly, whose constant and
enduring love, support, and encouragement have helped me through many of life's

challenges. Thank you. | love you.

To my daughter Sandra and my son David. Thank you for your understanding and

patience during those many times when deadlines were looming.

To Samuel Ajila, for helping me complete thiswork. [t has been a pleasure working with

youl.

To Lionel Briand, for introducing me to the finer points of software engineering and the

study of software product lines.

To the faculty and staff of Systems and Computer Engineering, particularly Trevor Pearce,
my academic advisor, Dorina Petriu, Murray Woodside, Daniel Amyot (University of

Ottawa) and Tony Bailletti, my defense committe, and, Darlene Hebert and Judy Bowman.

To Computing Devices Canada, especially George Georgaras, Cindy Tutt, Simon Hebert,

and John Moolenbeek, where | learned the best practices of Software Engineering.

To the men and women behind the National Research Council of Canada's O-Vitesse
program, particularly Arvind Chhatbar and Héléne Biddiscombe for the opportunity to

embark on my new career in Software Engineering.

Table of Contents

AB ST RA CT il
DEDICATION .. iv
ACKNOWLEDGEMENTS ... e iv
Table of CONtENtS e vi
Listof Tables Xi
List Of FIQUrES ..o Xii
Chapter 1 Introductiono et 1
1.1 A Definition of Software Product Line Engineering 2
1.1.1 DOmain ENgINEEring . ..ottt e 2

1.1.2 Software Architecture i 3
1.1.2.1 Architecture Terminologyccouiiiiinennnnnn.. 3

1.1.2.2 Architectural VIewsS ... 4

1.1.2.3 Architecture and Software Product Lines 6

1.1.3 ReEENGINEENNG .ottt e et ettt ettt 7
1.1.3.1 TheHorseshoeModel, 8

1.2 Feature-based Modelling i 9
1.2.1 What isaFeature?o oo 9

1.2 MOUIVAION .. e e 10
1.3 ThessStatement 10

1.4 TheSISOVEIVIEWot e e e e e e s 11

Chapter 2 Software Architecture with the Unified Software Process and

the UM L . 13
2.1 RequirementsDefinition i 14
2.2 AnalysiswiththeUSP e 16
2.3 Designwiththe USP e 20

Chapter 3 - Current Practice of Software Product Line Engineering 25
3.1 FODA - Feature-Oriented Domain AnalysiScoviiivnenn.. 26
3.2 FAST - Family-oriented Abstraction, Specification, and Trandation 29

3.2.1 DomainEngineeringand FAST it 29
3.2.2 Commonality and Variability Analyssin FAST 31
3.2.3 Application Engineeringand FAST iin... 32
3.3 KO A 33

Chapter 4 - Problem Definition 36

Al PErgpECtiVES ..t 37
4.1.1 Commentson FODA 37
4.1.2 Commentson FAST 38
4.1.3 Commentson KobrA ... 39

4.2 Problem Definition 39

Chapter 5- FOOM - Feature-based Object Oriented Moddlling 42

5.1 Expanding Feature-based Modelling, 43
5.1.2 Building a Feature Model Based onFODA 44
5.1.3 An Object-Oriented Perspective of the Feature Moddl 45
5.1.4 Adding Precisontothe FeatureModel 46
5.1.5 Feature Discovery and Propagation 49
5.1.6 Integrating the FeatureModel, 50

5.2 Architecture Transformation and Evolution 54
5.2.1 Modedling Strategies ...t 57
5.2.2 Stepsin the Architecture Transformation Process 59

5.2.2.1 Base Product Architecture Recovery 59
5.2.2.2 Domain Architecture Development 59
5.2.2.3 Product Line Architecture Development 60
5.2.2.4 Product Architecture Development 61

53 SumoftheParts 62
5.3.1 Traceability and Stereotypingcovviiiiiieiinnnnn... 62

5.4 SUMMIAIY .ttt e 64

Chapter 6 Mode Application i, 66

6.1 What iSSONar 67

6.2 Applying FOOM to Sonar Systemscoiiiii i e 70

6.3 Adapting the Base Product Architecture 71

viii

6.4 Developing the Domain FeatureModel 75

6.4.1 Understanding the ProductsintheDomain 75

6.5 Developing the Product Family FeatureModel 80
6.6 Product CONtractS ... 88
6.7 Building the Product LineDesignModel 89
6.7.1 Operator Console Subsystemcciiiiieiinennn... 90
6.7.2 Digital Signal Processor Subsystem, 90
6.7.3 The Command and Control (CCS) Interface 93
6.7.4 SoftwareDeployment 94
6.8 SUMMAIY ... e e 95
Chapter 7 ConClUSION e et 97
7.1 Evaluationof FOOM 98
7.1.1 Feature-based Developmento 98
7.1.2 Architecture-centric System and Product Line Development 99
7.1.3 Application Generationiiiiii i 100
7.1.4 AdoptionoftheUSPandUML 101

7.2 Limitationsof FOOM 101
7.3 Conference FeedbaCkot 102
7.3.1 Toolsfor FOOM e 102
7.3.2 ArchitectureValidation 103
7.3.3 Non-functional Requirementscccviiieinenn.. 103

7.3.4 Effectivenessof FOOMt e 103

7.4 ContribUutiono 104
7.5 FUtUre WOrK ... 105
Bibliography 105
APPENdIX A ACTONYIMS .ottt ettt e e e e e 110
Appendix B Hull Mounted Sonar System Specification 111
Appendix C Hull Mounted Sonar Data Dictionary 115

List of Tables

Table

2-1

Description Page
Example template for documenting atemplate 15
Artifacts generated during the FAST Commonality Analysis 32
Summary of current software product line practices 40
Base product architecture recovery workflow 59
Domain architecture development workflow 59
Product line architecture development workflow 60
Product architecture development workflow 61

Examples of stereotype label components to provide traceability in

software product family architecture development. 62
Primary hull-mounted sonar usecasesccovvviiennn... 72
Summary of features for the varioussonartypes 76
Summary of Product Functions for varioustypesof sonar 76
Sonar product linefeatures i 81

Xi

List of Figures

Figure
1-1
1-2
1-3
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9

2-10

Description Page
The SEI domain engineering ProCeSSovvineeinennnennnn.. 3
The four views of software architecture 5
The SEI horseshoe model for reengineering 8
UML notations used for requirementsanalysis. 14
Relationship of the use case model totheUSP 15
Relationships between the different analysisobjects 16
UML notation for structural aspect of the analyssmodel 18
UML notation for functional aspect of analyssmodel 19
Artifacts comprising the anaysismodel intheUSP 20
Artifacts comprising the design model intheUSP 21
Subsystem decomposition classdiagram 22
Design model deployment diagram 23
Modelling elements used to describe a software architecture 24
Use of Domain Analysis Products in Software Development 29
The FAST processpatternoouiieineii i, 31
Artifacts used for the specification and implementation of a KobrA

COMPONEN ottt e e 34

A feature encapsulates structural and dynamic aspects of aproduct ... 44

Xii

Figure Description
5-2 Building the feature model with basic aggregation and multiplicity
teChniqQUES
5-3 Using acontract to simplify the relationship between the Products
and Featuresinthe FeatureModel.
5-4 Relationship between product line and product feature contracts .

5-5 Correlation of the features and functionsto the USP Analysis

5-6 The feature model bridges the analysis and design models
5-7 Relationship between the Feature Model and the Analysis and
DesignModels ...
5-8 Multidimensional relationships between the analysis, feature and
design modelsinFOOM.
5-9 Horseshoe model modified for software product line development.
5-10 Relationships of the different stages of the architecture
transformations
5-11 Use case modd of the logical transformation from a base product
to aproduct linearchitecture
5-12 Modéling strategiesused INFOOM
5-13 The same artifacts are used to describe the architecture at each step

inthe transformationprocess,

Page

coa 47

X

... 95

Xiii

Figure

5-14

6-10

6-11

6-12

6-13

6-14

Description Page

FOOM uses the same methodologies and artifacts to model

architectures at each step in the transformation process. 64
SoNar SYStEM OVEIVIEW . ..ottt et et e 67
TYPES Of SONAr . ..o 69
Baseproduct usecasediagram 73
Base product featuremodel 74
Sonar domain featuremodel 75
Sonar domainusecasediagram i 79
Sonar product linefeaturemodel. 83
Product lineusediagram 84
Sonar family Active Detectionfeature 86
Sonar family Passive Detectionfeature 87

The Operator Console subsystem as defined in the product line
designmodel 91
Digital Signal Processor subsystem class diagram from the product
linearchitectureo oo 92
Command and Control Interface subsystem from the product line
architecture 93

Sonar product-linedeployment diagram 9

Xiv

Chapter 1

I ntroduction

A software product lineis a set of related products developed by an organization. These
products share a common managed set of behaviors and attributes. Organizations are
finding that a product line practice yields substantial measurable improvementsin
productivity and quality. First hand experience confirms that system development with an
eye to sibling products substantially reduces the effort required for the design and

implementation.

Typically, product-line development is characterized by processes and practices for
developing an individual system and then creating variations of it. These variations on
individual systems take continual investment in understanding new requirements, and in
redesign, recoding and retesting. The result can be less than optimal designs, in terms of

performance, quality and further evolution.

Thiswork proposes a set of methodologies to design and build software families where
members have a common architecture. The processes are based on providing value to the
user. Documentation of the architectures uses industry standard notations and established

software development practices.

1.1 A Definition of Software Product Line Engineering

Software product line engineering is a superset of three constituent disciplines: domain
engineering, software architecture and reengineering. Each are required to adequately

understand and build a product family.

1.1.1 Domain Engineering

Domain engineering is the systematic creation of domain-specific architectures and their
use in building applications. The emphasisison reuse: reusable components must be

designed to be eadily tailorable. For large systems, reuse of large, pre-integrated chunksis

key [3].

Domain engineering requires a deep and thorough understanding of the commonalties and
variations inherent in the undertaking. A process for domain engineering can be
characterized by the following steps (Figure 1-1):

* Domain analysisisthe process of identifying, collecting, organizing and representing
the relevant information in a domain, based upon the study of existing systems,
knowledge captured from domain experts, underlying theory, and emerging
technology within a domain.

* Domain design is the process of developing a model from the products of domain
analysis - requirements specifications, tables, models- and the knowledge gained from

the study of software requirement/design reuse and generic architectures.

2

Existing
domain
knowledge

 ——

Information
modelling
techniques

Domain
Analysis

 Bounding

< Commonalities
and differences
* Understanding

* Representing

Domain
model

—_—

Software /
system
architecture

Domain
Design

« Generic designs
« Coordination

models

« Partitioning

strategies

« Design specs

Design
model

—_—

Domain
Implementation

« |dentify
reusable
assets

« Develop
asset library

Reusable
assets

Figure 1-1 The SEI domain engineering process 3]

* Domain implementation is the process of identifying reusable components based on

the domain model and generic architecture

1.1.2 Software Architecture

The architecture of a software system is the structure of the system comprising software

components, externally visible properties of those components, and the relationships

among them [24]. In an engineering context, it is also the set of requirements, plans and

specifications that descibe the system in manner that designers can carry out the

implementation of the system. In essence, it bridges requirements and code.

1.1.2.1 Architecture Terminology

Software architecture terminology varies depending on the level of abstraction and the

intent of the particular design. Each type of architecture defines: element types and how

they interact, mapping of functionality to architecture elements, and instances of

3

architecture elements [9]. Following are architecture types used in this study:

Architectural pattern defines generic element types and how they interact (i.e.
client/server, peer-to-peer, single system).

Domain architectures define element types and allowed interactions, but for a
particular domain. These types define how the domain functionality is mapped to the
architecture elements

Product line / product family architectures apply to a set of products within an
organization or company. They define element types, how they interact and how the
product functionality is mapped to them. These architectures may also include
mechanisms for identifying the commonalties and variabilities between individual
productsin the family.

Software system / software product architecture applies to one system and describes
the element types, how they interact, how functionality is mapped to them, and the

instances of each element that exist in the system.

1.1.2.2 Architectural Views

The search for commonalties in various software architecture types has led to the

evolution of four distinct views: conceptual, module, execution and code. Each view

describes a different kind of structure. Between the views the structures are loosely

coupled and address different engineering concerns. Figure 1-2 illustrates the intent of

each view and the relationships between the different views.

Code view - the organization of the source code, object code, libraries, binaries, which

4

are then organized into versions, files and directories. The effectiveness of this
organization can affect factors such as reusability of the code, build time for the
system, etc.

Module view - the decomposition of the system into major components, identification
of interfaces and the partitioning of modules into layers.

Execution view - allocation of functional components to runtime entities, handling of
the communication, co-ordination and synchronization among those entities and
mapping them to hardware.

Conceptual view - description of the system in terms of its mgjor design elements and

the relationships among them.

SOFTWARE ARCHITECTURE
Components,
Connectors,
Configuration,
Conceptual View
Runtime
Components, constraints Exeg:ution
Connectors, Module constraints View g
Configuration g
[}
Modules 2—'_,
Module View <
New module §
partitioning
gjgsliféms New module r-%
Y’ ' partitioning) T
Layers Runtime
Entities
Code View
Changes to
Runtime
Entities
\ 4
—p Feed forward
Source Code
<— Feed back

Figure 1-2 The four views of software architecture [9]

5

1.1.2.3 Architecture and Softwar e Product Lines

A key challenge to taking a product line approach is that different methods of
development are required. In asingle-product approach, the architecture is evaluated with
respect to the requirements of that product alone. Single products can be built
independently, each with a different architecture. However, in a product line approach,
the designer must also consider requirements for the family of systems and the relationship

between those requirements and the ones associated with each particular instance.

In the context of product lines, a software architecture focuses on the representation,
definition, and evaluation of software architectures and their use in engineering
software-intensive systems in a particular domain. A robust software architecture

applicable across the product lineis critical.

Software architecture forms the backbone for building successful software-intensive
systems. A system's quality attributes are largely permitted or precluded by its
architecture. Architecture represents an abstract reusable model that can be transferred
from one system to the next. Architecture represents a common vehicle for
communication among a system's stakeholders, and is the arena in which conflicting goals

and requirements are mediated .

Software architecture represents one of the key reusable assets that form the basis of a

software product line. Different products in the product line usually share the same
6

architecture or are built using prescribed variations of a common architecture [5].

1.1.3 Reengineering

Reengineering focuses on leveraging existing software assetg 6] and the evolution of
legacy systems, especially as a baseline for product lineg2]. Few systems start out asa
"green field" development effort. A realistic approach for either migrating to a modern
software architecture or developing a product line begins with analyzing legacy systemsto
understand the current architecture and developing a strategy for mining and reusing

existing assets [6].

1.1.3.1 TheHorseshoe Re-engineering M odel

SEI's Horseshoe Model (Figure 1-3), as described in [19], presents a code-based approach
for extracting a system's architecture. It is paradigm-agnostic, leaving its implementation
to be defined on a system by system basis. This model identifies three basic reengineering
ProCesses:

* Architecture Recovery / Conformance - analysis of an existing system to recover a
system's current architecture by extracting artifacts from source code. This recovered
architecture is analyzed to determine whether it conforms to the "as-designed"”
architecture. The discovered architecture is also evaluated with respect to a number of
quality attributes such as performance, modifiability, security or reliability.

* Architecture Transformation - The "as-built" architecture recovered in the previous

step is re-engineered to become a desirable new architecture. It isre-evaluated against

7

the system's quality goals.

* Architecture-based development - instantiates the desired architecture. In this process,
packaging issues are decided and interconnection strategies are chosen. Code-level
artifacts from the legacy system are often wrapped or rewritten in order to fit into this

new architecture.

The horseshoe model provides a road map for extracting an architecture from an existing

system, transforming the architecture, say from functional decomposition to

object-oriented, and then providing rules for instantiating the new architecture.

Architecture Transformation

Base Desired
Architecture Architecture
Architecture Architecture Architecture-based
Representation Representation Development
Design
atterns & Styles
Function-level Program Function-level
Representation Plans Representation
Architecture
Recovery / Code Structure Code stvl Code Structure
sonformance Representation ode styles Representation
\/ \l

Source Text Source Text

Representation Legacy New System Representation
Source Source

Figure 1-3 The SEI horseshoe model for reengineering[19]

8

1.2 Feature-based Modelling

Current software architecture modelling technologies place a strong emphasis on
capturing the user's requirements, but bury them inside constructs such as use caseq[8]. A
mechanism is needed for drawing more of the software developer's focus towards the final

objective of any development project, the expectations and perceptions of the user.

1.2.1 What isa Feature?

Inits simplest form afeature is an aspect of a software system, such as a behavior or an
attribute, as perceived by the user. It represents aview of the system that is quite distinct
from that of the software architect, hiding the details of the software from the user.
Features can be used to group many requirements and their ensuing design artifacts into a

single entity [26].

It is easy to think of afeature as an autonomous, atomic elements of a software system
[26]. However, experience showsthat, in any nontrivial system, thisis not the case.
Looking at a system from the feature level provides a macroscopic view of its static and

dynamic structure as perceived by the user.

From a product line perspective, a feature can be considered to be an architectural pattern

taken from several instances of a product family's siblings.

1.3 Maotivation

User requirements can be captured in avery simple concept - features. These are the
attributes and behaviors of a product, software or otherwise, that provide value. Modern
software development processes place a strong emphasis on capturing the user's
requirements, but bury them inside constructs such as use cases. A mechanism is needed
for drawing more of the software developer's focus towards the final objective of any

development project, the expectations and perceptions of the user.

1.4 Thesis Statement

The major contributions of thiswork are:

1. Feature model artifacts and mechanisms for its development and evolution are added
to the Unified Software Development Process (USP).

2. FODA (Feature Oriented Domain Analysis) is extended beyond domain engineering to
product line engineering by incorporating the extended USP (in 1 above) into its
definition.

3. The horseshoe re-engineering model is extended to model multiple transformations,
from a base product to domain, product-line and product architectures

4. Thefeature contract, which defines the rules for instantiating a product from the
product line architecture, is introduced.

5. Theresulting model - FOOM (Feature-based Object Oriented Modeling) is applied in a

systematic way to afamily of sonar systems.

10

1.5 ThesisOverview

In thisfirst chapter, the subject of software product line engineering has been introduced

and the reasons for embarking on this research project have been presented.

Chapter 2 provides a cursory review of the Unified Software Development Process and

the UML.

Chapter 3 describes the state of the art in software product line engineering.

Chapter 4 identifies and discusses the strengths and weaknesses of the methodologies
presented in Chapter 3. This discussion leads to the formulation of the problem addressed

by thisthesis.

Chapter 5 presents the details of the proposed model. It identifies the extensionsto
existing practices and introduces new processes that address the problem of modelling

software product line architectures.

In Chapter 6 the new model is applied to an example application — a family of sonar
systems. The concepts of sonar are introduced followed by a description of current and
future members of the product family. From there, the new model applied systematically

to the example.

11

Chapter 7 evaluates Feature Oriented Object Modelling (FOOM) against the
methodologies in Chapter 3, recounts the contribution to research of this thesis and closes

with the future direction to the work.

12

Chapter 2
Softwar e Ar chitecture with the Unified

Softwar e Process and the UM L

Underpinning FOOM is the Unified Software-Development Process (USP) as described by
[8][11]. It isused to describe FOOM itself, and as atemplate for developing and
describing each of the architectures in the transformation from a base-product architecture
to aproduct line architecture. Anintegral part of this standardization is the adoption of
the Unified Modelling Language (UML) as the notation for the various assets developed

in the process. The different phases are reviewed herein to provide a context for the
model, but familiarity with the processesin [8][11] isrequired for a full understanding of

how the USP is applied in the model.

13

2.1 Requirements Definition

The purpose of requirements definition is to identify a problem area and build a system
specification that addresses the problem [11]. The end result of thiswork is a system
specification: anatural language artifact. However, we do use the UML Use Case Model
to assist us in understanding the activities the system will perform and the stakeholders,
human and non-human, involved in the system (Figure 2-1). [11] suggests the following
activities for requirements definition:

* Identifying actors - the different types of users the system will support

* ldentify scenarios - concrete sets of interactions between one or more actors in the
system.

* Identify use cases - generalized sequences of interactions between one or more actors
and the system. Thisis captured in the Use Case Diagram (Figure 2-2) and
documented in natural language. Table 2-1 is a suggested template.

* Refine use cases - elaborate use cases to include errors and exceptional conditions.
The <<extends>> relationship is used for this.

* Consolidate relationships among use cases - eliminate redundancies. The

<<includes>> relationship helps to simply the number of use cases.

Use Case Model
Use Case Diagram /r\ Software Architecture

} 1

Requirements *

Figure 2-1 Relationship of the use case model to the USP

14

Use case hame

AutomatedTellerWithdrawal

Participating actors

Customer, Keypad, Display, CashDispenser, Server

Precondition(s)

Customer has no overdraft

Flow of events

Customer inserts ATM card

Display message - request password

Customer enters password

Verify password

Request transaction type

Customers responds - WITHDRAWAL / AMOUNT
Verify transaction / adjust account balance

Dispense cash

. Return card

CoNOrWODNE

Postcondition(s)

Customer has cash, account balance reduced

Spoecial requirements

Customer has account with bank

Table 2-1 Example template for documenting a scenario - ATM withdrawal [11]

52\

Actor 1

System

-

Use Case

;Q\ / Use Case A
<?udes>> <<extends>>

Actor 2

N
2 O O

Use Case B

Use CaseC
Actor 3

Figure 2-2 UML notations used for requirements analysis.

15

2.2 Analysiswith the USP

The next step in the USP is analysis. Here we gain an understanding of the nature of the
system by specifying behaviors and interactions, identify attributes such as quality and
performance, and beginning to build a structure for the final product. The stepsin the
process are:

* Define participating analysis objects - Examines each use case and identifies
candidate objects. The participating objects can be further broken down into entity,
boundary, algorithm and control objects (Figure 2-3).

* Entity objects represent persistent or long lived information traced by the system.
* Boundary objects represent interactions between the user and the system.

e Algorithm objects represent atask performed by the system.

* Control objects aggregate agorithm, entity and boundary objects.

Use these objects as the kernel for building the Analysis Class Diagram (Figure 2-4).

<<control>>
System Controller

— ~
— ~
control control control
— ‘ S~
" \/
<<boundary>> data <<algorithm>> data <<boundary>>
Acquisition - Processing - Presentation
+send +receive +send +receive
-
~_ -
acquire process present
~__ Vi —

<<entity>>
Data

Figure 2-3 Relationships between the different analysis objects

16

* Map use cases to objects and define interactions - sequence diagrams tie use cases
with objects. See Figure 2-4.

* Mode nontrivial behavior of objects - in addition to sequence diagrams, which
represent behavior from the perspective of the user, statecharts are used to represent
the behavior of the system from the perspective of individual objects. Statecharts are
constructed only for objects with an extended life span and nontrivial behavior. See
Figure 2-5.

» Define attributes - named properties of a class defining a range of values an object can
contain.

* Define associations - arelationship between two or more classes denoting possible
links between instances of the classes; they have names and can have multiplicity and
roles attached at each end.

* Consolidate the model - solidify the model by introducing qualifiers, generalization
relationships and suppressing redundancies.

* Reviewmodel - the model is examined for correctness, consistency, completeness and

realism.

Figure 2-6 illustrates the structure of the USP's analysis model.

17

<<analy sis object>>
Boundary

<<analy sis object>>
Control identify

identify

<<analy sis object>>

O identify Control
-0 5]
\ identify
identify

Use Case <<analy sis object>> Actor
Algorithm
<<analy sis object>>
Entity
a)
<<entity >>
DataTy pe
<<entity >> i
<<entity >> Da:_;ny ey <<entity >>
DataTy peX yp DataTy peZ
<<control>> <<control>>
’7 UseCaseA ——————— Actor2
<<control>>
UseCaseC
<<control>> <<boundary >>
UseCaseB Actor3

b)

Figure 2-4 UML notation for structural aspect of the analysis model: a) transform use
case diagram artifacts to analysis objects b) Analysis Object Class diagram

18

/ \ : Boundary : UseCaseA : DataTypeX : Controll : Boundary2

: Actor

‘ stimulate ‘

create() ‘ ‘ ‘
. create() ‘

proces‘s()
‘ update() ‘

display()

rea%()

preseint visuals()

< |

!
|
-

a)

. start state

Processing

processing complete

data receiyed

processing error

recovery successful

Error recovery

recovery failed b)

error type identified

O)

Figure 2-5 UML notation for functional aspect of analysis model: a) Sequence Diagram
b) Statechart

19

Analysis Class Diagram

1.0 \ 1

1

Analysis Object

Dictionary

1.

1

Statechart

1 1
1 1 \TAnalysis Model |1
-

Sequence Diagram

Software Archite cture

Figure 2-6 Artifacts comprising the analysis model in the USP.

2.3 Design with the USP

Once we are satisfied the Analysis Model adequately defines the behavior and basic

structure of our system, we are ready to begin development of the Design Model, whose

overall structureisillustrated in Figure 2-7. The basic steps in this process are:

* Identify design goals - non-functional requirements such as reliability, fault tolerance,
security and extensibility.

* Design aninitial subsystem decomposition - break the system down into smpler parts,
each providing servicesto other subsystems. Document this work with the Subsystem

Class Diagram (Figure 2-8).

20

* Map subsystems to hardware and software platforms - examine the allocation of
subsystems to computers and the design of the infrastructure for supporting
communication between subsystems and document with a Deployment Diagram
(Figure 2-9).

* Manage persistent storage - identify the objects that need to be persistent and
determine the most effective way of storing them

» Define access control policies - define for each actor in the system which operations
they can access on each shared object

* Sdect a control flow mechanism - determine which actions - as previoudy defined in
use cases) need to be executed for a given stimulus and the order in which they should
occur.

* Describe boundary conditions - decide how the system is started, initialized and shut
down.

Figure 2-10 illustrates the relationship between analysis and system design. It isan

iterative-incremental process generating a number of refinements as the notion of how the

system needs to be built becomes clearer.

Sequence Diagram

Dictionary
1

Software Architecture

Subsystem Class diagram
1.5 g 1.%
"

]

Subsystem Decomposition

1

11
Deployment Diagram

Figure 2-7 Artifacts comprising the design model in the USP.

21

areindod

ssa00.d

-

elegmey
<<Amua>:

>

‘eregApesyke|dsiq Reidsig 9donma@indujioressdo
<<Amua>> <<Arepunog>> <<Arepunog>>
S[ensiAuasald J0ssa20idinduioressdo
<<wyniobre>> <<wyniobre>>

anpoBuIssad0id
<<wyniobre>>

19]|0)U0DBVBLIBNLISSN
<<|0U0d>>

AX01duoNEILNWIWOD

<<Arepunog>>

ELEENES
<<waisAsgnsp>

e1egpassad0id
<<Amua>>

19]]0U0D3PONBUISS301d
<<|0U0d>>

1odsuen

—— Axoiduonesunwwod
<<Arepunog>>

Buissadoid
<<waisAsgns>>

elegmey
<<fmua>>

J9jjouoQuoNIsINbavereq
<<|0U0d>>

yodsuen

Axoiguoned 0
<<Arepunog>>

uonisinboy ereq
<<walsAsgns>>

1

I

ereafpeayheldsia ©Jegpassad0id ereamey
<<Amua>> <<Amua>> <<Amua>>
sse|pJadnsereq
<<Amua>>
1011U0DZSS3201d
AxOI o) <<wyinobles>
<<Arepunog>>
J9jjouoDWaISAS
<<0N00>> [>— |01u0DTSs9201d
<<wyniobre>>
|01u0D WRISAS
<<waisAsgns>>

Axolduoireaiunwiwod
<<Arepunog>>

9PONUOITEINWLIOD
<<|0U0d>>

JENES walo
<<|0J1U0d>> <<|0U0d>>,

SUOIRIILNWWOD
<<waisAsgns>>

I

Figure 2-8 Subsystem decomposition class diagram

22

walsAsgns Aeidsig

walsAsgns ndu Jojerado

aj0su0) Joresado

walsAsgns Buissasoid

9poN Buissadoid

2IeMa|ppIN UoedIUNWWOD

WaISAS uopeIUNWWoD

—

jonuoD WalsAs

SPON [03U0D WAISAS

walsAsgns uonisinbay eyeq

apoN uonisinbay ereq

Figure 2-9 Design model deployment diagram

23

weibeiq wewholdeq

I

uosodwoda waeisAsqng

170

welbelp sse|n) waishsqng

8IN}08YIYOIY 8JBeMYOS

I

* syuswainbay

N

welbelq ese) asn

[8PO 8SB) 8s(

welbeiq sousnbag

[opoy ubiseq

X

seuljep
L

_Q\
[opop Sishieuy o <

VeyoslelS
AN

welbelq sousnbag

«k

Areuonoiq

100lq0 sisfjeuy

1 « b

welbeiq sse|) sishjeuy

Figure 2-10 Modelling elements used to describe a software architecture

24

Chapter 3

Current Practice of Software

Product Line Engineering

Most new methods are built upon existing processes and models. In this chapter, current
software product line engineering practices are examined. The goal isto expose
weaknesses from which the basis for a new process can be identified, and, to highlight

strengths that can be carried forward into the new methodology.

25

3.1 FODA - Feature-Oriented Domain Analysis

The Feature-Oriented Domain Analysis (FODA) methodology [14] resulted from an
in-depth study by the Carnegie Mellon Software Engineering Institute (SEI) of other
domain analysis approaches. FODA focuses on the concept of afeature - an aspect of a
system as perceived from the user's point of view. Successful applications of various
methodologies pointed towards approaches that focused on the processes and products of
domain analysis. FODA processes are:

* establishing methods for performing a domain analysis

* describing the products of the domain analysis process

* establishing the means to use these products for application development

The FODA methodology was founded on a set of modelling concepts and primitives used
to develop domain products that are generic and widely applicable within a domain. The
basic modelling concepts are [14]:

e Abstraction - used to develop a domain architecture from the specific applicationsin
the domain. This architecture abstracts the functionality and designs of the applications
in adomain, generalizing "factors" that make one application different from other
related applications. The FODA method advocates that applications in the domain
should be abstracted to the level where no differences exist between them. Thisis
done to expose the underlying common architecture, or, if one doesn't exist, to
facilitate its development.

* Refinement - used to both refine the domain architecture back into applications.

26

Specific applications in adomain are represented as refinements of the domain
architecture by using the general abstraction as a baseline and selecting among
alternatives and options to develop the application (i.e., those factors that have been

abstracted away must be made specific and reintroduced).

Application abstraction / refinement is accomplished by using the modelling primitives of:
aggregation/decomposition, generalization/specialization and parameterization. The
FODA method applies the aggregation and generalization primitives to capture the
commonalties of the applications in the domain in terms of abstractions. Differences

between applications are captured in refinements.

An abstraction can usually be refined (i.e., decomposed or specialized) in many different
ways depending on the context in which the refinements are made. Parameters are defined
to uniquely specify the context for each specific refinement. The result of this approach is
adomain product consisting of a collection of abstractions and a series of refinements of
each abstraction with parameterization. Understanding what differentiates applicationsin
adomain is most critical sinceiit isthe basis for abstractions, refinements, and

parameterization.

The feature-oriented concept of FODA is based on the emphasis placed by the method on
identifying prominent or distinctive user-visible features within a class of related software

systems. These features lead to the conceptualization of the set of products that define the

27

domain.

The domain analysis process consists of a number of activities, producing many types of

models (Figure 3-1). These models are used to develop applications in the domain:

The context model is used by a requirements analyst to determine if the application
required by the user is within the domain for which a set of domain productsis
available.

The feature model identifies mandatory, aternative, and optional features. The feature
model is a better communication medium since it provides this external view that the
user can understand.

The entity-relationship model can be used by a requirements analyst to acquire
knowledge about the entities in the domain and their interrelationships. An
understanding of the domain will help the analyst to deal with the user’s problems.
The analysis can determine if the functional model, consisting of the data-flow model
and the finite state machine model of the domain products, can be applied to the user’s
problems to define the requirements of the application. If the user’s problems are all
reflected in the feature model, then the requirements may be easily derived from the
models. Otherwise, new refinements of the abstract components may have to be
made.

The architecture model is used by the designer as a high-level design for the
application. If the user’s problems are reflected in the feature model, a design may be

easily derived from the architecture model. If the problems are not represented, then

28

the architecture model should be further refined from the other domain products

Domain Analysis

*‘ Finite-State Machine
\ Feature Model / Data-Flow Model
End User -
\ Architectural
% Model

Requirements
Analyst
Entity Relationship /
<« Model

Domain Expert Context Model

Softw are Engineer

Figure 3-1 Use of Domain Analysis Products in Software Development [14]

3.2 FAST - Family-oriented Abstraction, Specification, and
Translation

FAST was developed at Bell Laboratories (Lucent) in an attempt to balance the

requirements for rapid production of software and the ever-present need for careful

engineering. Inessence, it is a pattern for software production based on three sub

ProCesses:

* Qualifying the domain - families which are deemed important enough to the business
to warrant further investment are identified;

* Engineering the domain - infrastructure for the purpose of generating product family
members is developed;

* Engineering applications - using product generation infrastructure to produce family

29

members rapidly.

Figure 3-2 illustrates the relationship between these three sub processes.

3.2.1 Domain Engineering and FAST

The purpose of domain engineering in the context of FAST isto make it possible to

generate members of afamily. To accomplish this, domain engineers must [1]:

Define the domain (or family of products)

Develop alanguage for specifying the family members (the application modelling
language)

Develop an environment for generating family members from their specifications

Define a process for producing family members using the environment

The artifacts produced during the FAST domain engineering process include:

An economic model of the domain

A definition of the family identifying standard terminology and any assumptions that
characterize the commonalties and variabilities of individual family members (see the
following section for a further understanding of commonality and variability analysis)
A description of the decision model for the domain

Thetools, code libraries and documentation required to build and use an application

engineering environment

30

7777777777 » Qualify Domain

i Engineer Domain
Feedback | -

o o » Analyze Domain

| A Implement Domain

| lterate

i Application Engineering Environment

i Engineer Application

| r~ % Model Application
Feedback | ! Vi

terate | Produce ﬁ\/pplication
Deliver & Support App'n

plications

Figure 3-2 The FAST process pattern [1]

3.2.2 Commonality and Variability Analysisin FAST

A central element of the FAST domain engineering process is the commonality analysis.
This analysis contains a list of assumptions that are true for al family members. These
assumptions form the set of requirements that hold true for all members of the product
line. Also part of this analysisis an identification of product variabilities - the aspects that

will vary from product to product in the family - and the range of values for each. Table

31

3-1 summarizes the artifacts generated by the commonality analysis. Refer to [1][16][17]

for adetailed discussion of the FAST Commonality Analysis process.

Artifact Description

Dictionary of terms A standard set of key technical terms used to describe the
product family and its members

Commonalities A structured list of assumptions that are true for all members
of the family

Variabilities A structured list of how family members may vary

Parameters of variation | Quantification of the variabilities, specifying the range of
values for each one

| ssues A record of the alternatives considered for key issues that
arose while analyzing the domain

Table 3-1 Artifacts generated during the FAST Commonality Analysis

3.2.3 Application Engineering and FAST

The purpose of application engineering in FAST isto quickly explore the space of
requirements for an application and then to generate the application with the infrastructure
developed during domain engineering. The idealized FAST application engineering
process consists of analyzing a customer's requirements for a product line member,
engineering and generating the application, delivering the code and documentation to the
customer for validation and acceptance, and providing sustaining support. The artifacts
generated or refined during this processinclude: amodel of the application, code for the

application and support documentation. FAST recognizes that the application engineer

32

and the customer rarely establish satisfactory requirements on the first try, thus
engineering the application becomes an iterative process that makes heavy use of the

analysis and generation tools previously developed.

A key component of the FAST application engineering environment is the application
modelling language that is used to specify family members. FAST does not specify a
particular language, but instead leaves the details to the domain engineers and system

architects.

3.3 KobrA [29][30]

The KobrA method - an object-oriented version of PULSE[25][27][28] - revolves around
component-based software engineering: the development of work products - interfaces,
subsystems, use cases, classes, templates and test cases, etc. - that are designed to be
reusable [7]. The thinking behind KobrA isthat component-based systems within a given
domain will share many similarities and will use many of the same components. The
variabilities between systemsin a family will thus likely revolve around a relatively small
number of critical components. Instead of assembling every system in the family from
scratch, KobrA builds a framework which hardwires the common aspects of the family,

and allows the variable components to be plugged-in as needed.

Work products are oriented towards the description of individual components. This

means that, as far as possible, there are no global or system-wide assets. Instead they are

33

defined to carry information only related to their particular component. The intention isto
allow components to be separated from their development environment and be more

readily reused independently. Figure 3-3 illustrates these concepts. .

. Decision model
(Textual)
A
> Behavior model
(UML statechart)
A
Functional model Structural model
(operational specifications) Komponent < (UMIaigIars:n/] SO)bJeCt
. (KobrA Component) o
Specification
Realization
A A
Interaction model Structural model
(UMLcollaboration | < (UML class /object
diagrams) model)
A
Activity model
> (UML activity diagram)

A

Decision model
(textual)

\

Figure 3-3 Artifacts used for the specification and implementation of a KobrA
component

34

KobrA has fully embraced the UML in documenting the work products created in the
development of components, eliminating the need to learn new notations and build tools to
support the processes. It also employs some aspects of the USP focusing on microscopic

rather than macroscopic development.

The KobrA method is broken down into two constituent sets of activities: framework
engineering and application engineering. The purpose of the framework engineering
activity isto create, and later maintain, a generic framework that aggregates al product
variants that make up the product family, including information about their common and
digoint features. Application engineering activity instantiates this framework to create
individual members of the product family. The goal isto use asingle framework to

instantiate multiple products / applications.

35

Chapter 4

Problem Definition

The methods in the previous sections have been proven to assist software architectsin
understanding product domains, extracting and re-engineering the architecture of existing
systems, and in presenting these concepts in standardized models. Unfortunately, most of
these methodologies have either not adopted modern modelling techniques. Those that
have embraced change have chosen to ignore other developments in software engineering
such as the importance of architecture-centric development. With the rapid adoption of
object-orientation and its associated modelling languages, these tried and true processes

need to be revisited to see if some currency can be added.

36

4.1 Perspectives

Each of the approaches in Chapter 3 has demonstrated their value in supporting the

development, maintenance and evolution of many diverse product lines.

4.1.1 Commentson FODA

FODA mainly distinguishes itself by its feature analysis, whose purpose is to capture, in a
model, the end user's understanding of the capabilities of applications in the target domain.
However, many of its processes and products are from the non object-oriented (OO),
functional decomposition world, making it less straightforward to develop OO product
family architectures. With the general adoption of the modern software notations within
the software community, most of the artifacts of FODA can be instantiated with UML and

merged with the processesin [8] to extend FODA in an OO context.

With that said, there is still one aspect of FODA that does not have an equivalent in OO
modelling techniques - the feature model. Although there have been examples of a one to
one mapping of the feature typesto an OO context, such asin [21], incorporating the
notion of afeature as defined previoudly affords the opportunity to leverage the USP to
gain an understanding of the dynamics of a feature not otherwise possible with a simple

hierarchical representation.

Languages such as the UML place a strong emphasis on capturing the user's requirements,

but bury them inside constructs such as use cases. We need a mechanism for drawing

37

more of the software developer's focus towards the final objective of any development

project, the expectations and perceptions of the user.

4.1.2 Commentson FAST

FAST is as much a pattern for processes asit isa set of processes. Although this makes it
very flexible, this also makes it prone to misinterpretation when instantiated. Modern
software development demands that processes be more of a cookbook than a somewhat

more ambiguous design pattern.

FAST aso centers on the creation of awhole suite of application generation tools.
Presumably, these tools are custom-built by the development team, which means that they
must also support them. This can serioudly defocus the development team from their
primary function: application development. Third-party vendor tools are always
preferable when available because they are focusing on their primary function: tool

development.

There are two aspects of FAST that would appear to have some direct applicability to
developing a generic method of describing software product lines. First, the commonality
analysis process appears to be extremely useful: it is sufficiently process-agnostic allowing
it to be ported to other methods. Second, the concept of an application modelling
language permits developers to use open standard notations, such as UML, which are

supported by third-party tools complete with code generation capabilities.

38

4.1.3 Commentson KobrA

KobrA has made significant advances in bringing the UML, and to a lesser extent, the
USP to software product line engineering. It has leveraged this de facto industry standard
notation to make its daily use more readily adoptable. It also advocates the use of many
object oriented techniques, especially frameworks. Having system and application level
behaviors encapsulated by a framework permits software engineers to adorn a prescribed
architecture with application-specific components. The intent isto promote large-scale

reuse.

Unfortunately, KobrA has chosen to significantly reduce the role of software architecture,
basically hardwiring the product line's architecture very early on in the process. But how
many times have we seen a software project run into severe difficulty due to the absence
of an architecture altogether, or the presence of one that is not sufficiently malleable. This
diminution of the role of architecture brings with it risk of increased, not decreased,
development risk. Further, the view of the product line at the architectural level is what

provides us with the best perspective of the product family evolution road map.

4.2 Problem Definition

Table 4-1 lists strengths of each of the product line methodologies examined previously
which can be used to support a new process for modelling software product lines, and,

deficiencies which any new process should address.

39

M ethodology Re-usable Aspects Deficiencies

FODA * Feature based, providinga |+ No formal definition of a
user perspective of the feature from a modelling
product domain perspective.

* Well-established domain * Does not specifically
engineering processes and address architecture
work products * No formal processes for

migrating domain analysis
to product lines

FAST * Well understood * Designers spend alot of
commonality and variability time developing tools.
processes * Application generation

language not defined
* Not object-oriented

KobrA * Incorporates object-oriented | * Role of architecture not

notations and processes adequately addressed

Table4-1 Summary of current software product line practices

In thiswork, afeature-based, object-oriented implementation of a process to extract and

extend a software product line architecture will be developed. To accomplish this, it will:

* Present an object-oriented version of FODA's feature model using UML and integrate
it into the Unified Software Development Process.

* Provide amechanism for recovering architectures from base products, evolving those
architectures to the product domain, product line and products.

e Usenon-proprietary software tools.

There are several reasons for developing this new approach:
* It hasits basisin processes that have been demonstrated to be of value (SEI's FODA,
FAST and the horseshoe re-engineering model), but have not, as yet, been formalized

with newer technologies such as Object-Oriented Analysis and Design (OOAD) and

40

the Unified Modelling Language (UML). By leveraging the experiences gained with
these older technologies, we short-circuit the need to "reinvent the wheel" in terms of
underlying processes and give them currency that might not otherwise be obvious.
Legions of software developers are being trained with a solid understanding of the
Unified Software Process (USP). Basing the extended processes on the USP further
leverages skills of designers, reducing even further their "learning curve", accelerating
their productivity.

Looking at the problem of architecture extraction, implementation and evolution from
the perspective of features brings with it a strong aspect of traceability between user
requirements and the development of domain, product line, and application
architectures. Product development in some industries, such as telecommunications,
can be organized completely around features. The method can readily integrate in
such an organization.

Designing a process within the scope of the existing range of computer aided software
engineering (CASE) tools produces a process that is more readily usable "out of the

box".

41

Chapter 5

FOOM - Feature-based Object Oriented M odelling

FOOM is an extension of SEI's FODA[22] and the elaboration of the Unified Software
Process described in detail in [8][11]. These processes and methodologies have proven to
be effective in their respective focus areas of domain analysis and object-oriented analysis
and design. FOOM represents a model that combines complementary aspects from each
into a process and a set of artifacts suitable for modelling software products based on a

family approach.

42

5.1 Expanding Feature-based Modelling

Languages such as the UML place a strong emphasis on capturing the user's requirements,

but bury them inside constructs such as use cases.

Recall that, for this work, features are used to group many requirements and their ensuing
design artifacts into a single entity [26]. From a modelling perspective, afeature could
include a primary use case plusits <<extends>> and << includes>> counterparts,
associated analysis and design objects, their associations, and, model elements such as
diagrams and entries in the data dictionary (Figure 5-1). This provides a very powerful
mechanism for capturing the essence of a system at alevel of abstraction above that of a

standard USP / UML modd!.

It is easy to think of afeature as an autonomous, atomic elements of a software system
[26]. However, experience tells usthat, in any nontrivial system, thisis not the case.
Looking at a system from the feature level provides a macroscopic view of its static and

dynamic structure.

From a product line perspective, a feature can be considered to be an architectural pattern
taken from several instances of a product family's siblings. As will be shown in subsequent
sections, these patterns take shape as a products commonalties and variahilities are

discovered.

43

<<model element>>
Statechart

<<model element>>
Analysis Object

<<model element>>
Design Object

<<model element>>
Feature 1

1 1
1.*

<<model element>>
Sequence Diagram

<<modelelement>>
UseCases

1.*

A

Actor

Figure 5-1 A feature encapsulates structural and dynamic aspects of a product

5.1.1 Building a Feature Model Based on FODA

FODA isthe progenitor of most modern domain and analysis modelling methodologies. It
builds on three fundamental sub processes. domain analysis, feature analysis and feature
modelling. Domain analysis focuses on identifying a product that is believed will form the
kernel of the product line. It also lists current and future sibling and descendant products.
Feature analysis applies commonality and variability analysis to develop alist of common,
required functions across the domain, as well asatop level list of their differentiating

characteristics. The results of feature analysis provide the constituent artifactsto populate

the feature moddl.

5.1.2 An Object-Oriented Per spective of the Feature M odel

The first building block of the feature model is afeature class. Considering FODA's

feature model, the feature class is specialized into three subtypes:

* Required features must be present for the system to function asintended. Thereis
normally only one version of arequired feature for a given product.

* Alternate features are subclasses of required features with their differentiator being
that several versions or flavors of a particular feature are available, but only one
version can be used to provide that feature's functionality.

* Optional features are not required for the basic product to function, but rather they
provide functionality supplemental to the required feature set.

The next set of artifacts in the feature model relate to how the features are assembled and

the rules that guide their merger into aproduct. Packages are used to consolidate

Products and Features. On afirst pass, aggregation can be used to illustrate the

composition of products with multiplicity implying a sense of required, alternative and

optional. [21] introduces the use of stereotyping associations to further refine the

aggregation rules. Figure 5-2 illustrates these relationships.

45

FeatureModel | 1
Products
1”*
Feature
<<product>>

Product Product Features

& Functions
1
L L1 <<optional>> Optional Feature
0..1

Required Feature

Sy

<<XOR>> Alternate Feature

<<required>>

Figure 5-2 Building the feature model with basic aggregation and multiplicity techniques

5.1.3 Adding Precision to the Feature M odel

Although these basic constructs are sufficient to build a complex feature model, the
maintenance efforts as the product line evolves could be substantial. The model can be
simplified with the introduction of a feature list, which is a contract between the product
and the feature set of the product family. It becomes an association class between the
product and the features. The aggregation rules are the class invariant, written in the

Object Constraint Language (OCL)[12]. Reducing the relationshipsto afew lines of OCL

46

substantially reduces ongoing maintenance and keeps the model readable. Figure 5-3

illustrates the relationship.

1 —‘
FeatureModel

Products

1.* | <<contract>>
FeatureList

| —

Product Features
<<product>> ‘ .
P roduct Feature and Functions
1 1.% %
Alternate Feature Required Feature Optional Feature

Figure 5-3 Using a contract to simplify the relationship between the Products and
Featuresin the Feature Model.

Start by creating the feature list for the product line. Its classinvariant contains
enumeration of the members of the product families plus enumeration of the required,

alternative and optional features.

contract <Product Line>

Product Type enun{ Productl, Product2,....,ProductN}

Requi r edFeat ures enun{ RFeat urel, RFeature2,..., RFeatureN}
Al t er nat eFeat ures enun{ AFeaturel, AFeature2,..., AFeatureN}
Opti onal Feat ures enun{OFeaturel, OrFeature2,..., OFeatureN}

end contract;

47

From there, we can develop contracts for the feature lists of the individual productsin the

product line.

contract <Product>
sel f. Requi r edFeat ur esLi st - >i ncl udes(RFeaturel) and
sel f. Requi r edFeat ur esLi st - >i ncl udes(RFeature2) and
ééif.quuiredFeaturesList—>includes(RFeat ureN)

sel f. Al t er nat eFeat ur esLi st - >i ncl udes(AFeaturel) and
sel f. Al t er nat eFeat ur esLi st - >i ncl udes(AFeature2) and

sel f. Al ter nat eFeat ur esLi st ->i ncl udes(AFeat ureN)

sel f. Opti onal Feat ur esLi st->i ncl udes(OFeaturel);
end contract;

The inheritance relationship between the product line and family members contractsis
shown in Figure 5-4. Use of enumeration of products and features and Boolean

expressions allows for a very concise definition of an individual product's features.

<<contract>>
ProductLineFeatureList

]

<<contract>> <<contract>> <<contract>>
ProductlFeatureList Product2FeatureList o o o ProductNFeatureList

Figure 5-4 Relationship between product line and product feature contracts

48

5.1.4 Feature Discovery and Propagation

When building the Feature Model, it may not be obvious exactly how a product's features
are identified. Work on the application described in the next chapter provided a means of

formalizing this process.

The first pass at feature discovery started with the user-visible behaviors and outcomed 3].
Commonality and variability analysis of the system behaviors and attributes served to
subdivide the features. One set was till directly visible to the user - that is observable via
one of the system "boundaries’ - and also served to distinguish one product from another.
Work on the sample application gave rise to the notion that the features discovered in
domain analysis would become the use cases around which the target architectures would

be built.

Another set of features was found to be common to all or most of the products, but they
were not directly visible to the user. These features were reclassified as functions as they
provide the infrastructure on which the features operate or "function”. They also serveto
aggregate sub components of different features. When building target architectures, there
was a strong correlation between them and the "actors' in the analysis. For this reason,

and their correlation with the features, they remain part of the feature model.

49

PrimaryUseCase

o 2

Actor
identify

Feature Function
Uservisible |\ Feature Model Not visible to
user

Figure 5-5 Correlation of the features and functions to the USP Analysis Model

5.1.5 Integrating the Feature M odel

Now that the internal structure of the Feature Model has been explored, its relationship to
the other parts of USP must be determined. [20] discusses the relationship of the feature
model from a stakeholder perspective: the feature model is a mechanism for refining the
requirements elicited during analysis and is related to the design assets asiillustrated in
Figure 5-6a. Figure 5-6b extends this view, incorporating the constituent artifacts of the

object model.

50

Next, recall the UML description of afeature (Figure 5-6¢). Examination shows a
correlation between its constituents and the USP Use Case, Analysis, and design Models.
Building on the relationship between features and the object models (analysis, design) , it
was concluded that the feature model bridges the analysis and design models. Features

populate these models (Figure 5-7), from which modelling continues.

Use Case Model

requirements

X

User +verify

Dictionary Object Model

features

Feature Model Use Case Model
+refine

requirements

Analysis Model

Dictionary
User +verify

features \
v 3\
Feature Model % Design Model
+refine

b)
Elementof
Design Model
k<model element>> ™~

Statechart

[<<model element>>
Design Object

Elements of

Analysis Model
———— <<model element>>

Analysis Object

1
i<<model element>> 1 1.
Feature %
\ 1

1%

<<model element>>
Sequence Diagram

1.%
Elements of Use

Case Model

<<model element>>
UseCases

Figure 5-6 The feature model bridges the analysis and design models.

51

wrelifelqg JuswAoldaq
T

uonisodwoosaq waisAsqns \L 1opoN ubisag

L T

s109[qO ubisa@

weibelp sse|n waisAsqns

70

21N108)1Y01Y 8Jemyos

T

* sjuswialinbay

v

I9PON

weibeiqg ase) asn

ased asN

T

weibelq aouanbas

sauyap
T

|9PON Bintea

¢

19PON SIsAjeuy

HQ\
T

T

T

*'T T

[

weibelq sse|D ainyea

weibelq aouanbas

Areuonoig

UeydalelS

ﬂ

*'T

108[qO sisAreuy

T
T T

weibelq sse|D sisAleuy

Figure 5-7 Relationship between the Feature Model and the Analysis and Design

Models

52

The resulting model (Figure 5-8) is also multidimensional, and, still entirely supported by
an object model. The relationship between the analysis and design models remains. There
is also an independent relationship between the analysis and feature models, where
evolution may occur without the need to aso build the design model. Similarly, the
feature and design models may evolve independent of analysis. However, this should not
be done until individual product architectures are being developed from the product line

architecture.

Analysis Model Design Model

“«—>

Feature
Model

Object Model

Figure 5-8 Multidimensional relationships between the analysis, feature and design
modelsin FOOM.

53

5.2 Architecture Transformation and Evolution

The transformation process for FOOM is based on the horseshoe re-engineering model
and its latest form CORUM 11 [19]. It involves re-engineering an architecture from an
abstract level - plans and specifications rather than code - giving rise to a product
architecture that can be transformed to a new paradigm. FOOM builds on this approach,
focusing on migrating architectures from the base product through to domain, product line

and product architectures from the conceptual level only.

There is an assumption that there exists a base product from which downstream
architectures. If that is not the case, then the domain architecture will have to serve asthe
starting point for the product line. It isalso assumed that the base product's architecture is
well defined. If that is not the case, an architecture must be extracted before the

transformation can proceed.

Once a base product has been identified and its architectural assets deemed to be suitable,
a series of transformations are performed to migrate the architecture, first to adomain
architecture, sufficiently abstracted to represent al products in the domain. From there,
variability analysis provides attributes that differentiate one product from another, leading
to aproduct line architecture. The final step isto develop the rules for deriving a
single-system architecture from the product line architecture. Figure 5-9 provides a
pictorial description of this process. Figure 5-10 provides a UML perspective of the same

logical transformation.

Logical Transformation

New Product
Functional &
Non-functional

Domain Commonality / -
Analysis Variability Analysis Requirements
Base Product Domain Product-Line New Product
Architecture Architecture Architecture Architecture
Conceptual Conceptual
View View
Analysis of Features Development
an Existing of New
System System
Execution Runtime Entities & Execution
View (Communication) View
Module \ Modules / Module
View View
Base Product Code Legac\y/ Source \Néw Product Code
Functional & View Assets Components Assets View

Non-functional
Requirements

Figure 5-9 Horseshoe model modified for software product line development.

1

Base Product

A

describes

Product Domain

N

describes

<g1

Product Line

N

describes

Product

AN

describes

Base Product Architecture

Domain Architecture

Product Line Architecture

Product Architecture

T

Figure 5-10 Relationships of the different stages of the architecture transformations

55

In the same manner that we use the USP to design software systems, a process model can
be built. The use case diagram, asillustrated in Figures 5-11 shows each of the
transformation processes as a use case; the participating objects, architectures, products

and product features, are actors.

O ase Product
Architecture

Recover base product architecture
7 \
<<includes>> <<extends >>
/ \ Do main
O Architecture

<<includes>>

.) Domain Analysis
Logical Transformation

<<includes>> \

/ / <<includes>> Product List

mmonality Analysis
Product Features

SW Architect Identify products in domain List

<<includes>>

<<includes>> \
<<incudes>>
<<includes>>
/ | Feature Contract
Q?includes»> ‘
Variability analysis)
Identify product features
A 4
<<includes>> Product

\ <gincludes>>) Architecture
Develop Product Line Architecture ~' ;Q\

Product Line

O Architecture

Develop Product Architec ture

<<includes>>

Figure 5-11 Use case model of the logical transformation from a base product to a
product line architecture

56

5.2.1 Modelling Strategies

Due to the close relationship between features and use cases, it is not obvious which

artifact should drive architecture development. Two modelling strategies are possible[14]:

* Feature-driven development is appropriate for mature organizations where domain
experts, with experience in developing similar products are available. This permits
exploration of architecture alternatives early in the product line development cycle.
Feature-modelling focuses on the commonalties in a product line feature set and
introduces variabilities as refinements. Use cases serve to identify and define the
structure and behavior of the systems suitable for implementation by designers.

* Use-case-driven development is suitable in less mature organizations including
projects of mature companies in a new domain, or situations where availability of
domain expertise islimited. Use-case-modeling can serve to provide a product vision

where one does not already exist or whereit is not clearly defined.

There are severa issues to consider in selecting a modelling strategy. Oneisthe
relationship between the base product architecture and its successors. Although it may be
well understood (the USP is after all use-case-driven), the results of its transformation into
the domain architecture is not clear at the beginning of the exercise. On the other hand,
features are used to align the designer's focus with that of the user. This abstraction
makes FOOM architecture-centric, providing a high level view of the product line and
avoiding the loss of clarity where conceivably hundreds of use cases could eventually be

required. FOOM also assumes domain expertise is available in the form of an existing

57

base product and architects who have built similar systems.

A balance needs to be found between these opposing strategies. Work on the example
provided a compromise solution. A use-case driven strategy is used to migrate from the
base product architecture to the domain architecture. FOOM then uses afeature-driven

strategy (Figure 5-12) for subsequent transformations..

Derivation

>
»

Feedback, verification, analysis

Derivation of
Use Cases

Derivation
of Objects

FEATURE MODEL
v v

Validation of feature semantics,
discovery of new features

% System Responsibilities O O %
-
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, >

OBJECT MODEL USE CASE MODEL

USE CASE MODEL
Derivation Derivation of
of Objects A Y. Features
Consistency
Analysis
[e R e
OBJECT MODEL ‘ ‘ ‘ ‘ ‘ ‘
b) FEATURE MODEL

Figure 5-12 Modelling strategies used in FOOM [14]: a) feature-driven
b)use-case-driven

58

5.2.2 Stepsinthe Architecture Transformation Process

Each of the stepsin the architectural transformation can be documented as workflowsin

the same manner as use cases.

5.2.2.1 Base Product Architecture Recovery

Use case hame

BaseProductArchitectureRecovery

Participating actors

SwArchitect, BaseproductArchitecture

Precondition(s)

Domain experts have identified a product suitable to
use as the base product

The architecture for the candidate base product is not
adequately documented

Flow of events

4.

| dentify primary use cases from existing requirements
documents

Elaborate each use case

Build analysis model (sequence and analysis class
diagrams)

Build design model (subsystem decomposition and
software deployment)

Postcondition(s)

Base product architecture defined

Table 5-1 Base product architecture recovery workflow

5.2.2.2 Domain Architecture Development

Use case hame

DevelopDomainArchitecture

Participating actors

SwArchitect, BaseProductArchitecture,
DomainArchitecture, ProductFeaturesList, ProductList

Precondition(s)

Product domain can be identified and bounded

Flow of events

1
2.

| dentify current and future products in the domain
| dentify features of all products to be included in the
domain.

3. Commonality analysis identifies functions
4.
5. Elaborate use cases based on sufficiently abstracted

Top level features identify use cases

features such that no difference between products
exists.
Build domain feature model, identifying modelling

59

Use case hame

DevelopDomainArchitecture

elements associated with each feature.

7. Build the analysis model based on the model elements
for each feature in the Feature Model

8. Refine the analysis model to accommodate
relationships that arise as aresult of multiple feature
inclusion

9. Build and refine the design model based on the model
elements from each feature in the Feature Model

10. Refine the design model to accommodate relationships
that arise as a result of multiple feature inclusion

Postcondition(s)

Domain architecture developed.

Table 5-2 Domain architecture development workflow

5.2.2.3 Product Line Architecture Development

Use case hame

DevelopProductLineArchitecture

Participating actors

SwArchitect, DomainArchitecture, Product Line
Architecture, ProductFeaturesList, ProductList, Product
Line Feature Contract

Precondition(s)

Domain architecture has been developed

Flow of events

1. Variability analysis identifies product features

2. Build the product line Feature Model from the domain
features, using variabilities of each product to refine
existing use cases and identify new ones.

3. Build product line and individual product feature
contracts

4. Populate the use case, analysis and design models with
components from each fetaure.

5. Refine the use case, analysis and design models to
accommodate relationships that arise as a result of
multiple feature inclusion

Postcondition(s)

Product Line Architecture developed

Table 5-3 Product line architecture development workflow

60

5.2.2.4 Product Architecture Development

Use case hame

DevelopProductArchitecture

Participating actors

SwArchitect, Product Line Architecture, Product
Architecture, Product Line Feature Contract, Product
Line Feature Contract

Precondition(s)

Product Line has been developed

Flow of events

1. Build the product line Feature Model based on the
feature contracts of the product line and the product.

2. Populate the use case, analysis and design models with
components from each feature.

3. Refine the use case, analysis and design models to
accommodate relationships that arise as a result of
multiple feature inclusion

Postcondition(s)

Product Architecture developed

Table 5-4 Product architecture development workflow

61

5.3 Sum of the Parts

When the extensions of each of the supporting methodologies are aggregated in the new
model, a new set of processes arises that generate product line architectures that are
entirely object-oriented. The same types of artifacts are produced for each constituent
architecture. A feature model at each stage of architecture development alows the
evolution of each feature to be tracked. It also provides, in a single model, the ability to

develop road maps for future evolution (Figure 5-13).

5.3.1 Traceability and Stereotyping

In order to provide a very clear traceability mechanism, a series of object stereotypes are
used, giving a clear indication of the development stage to which an artifact belongs. The
general form of the stereotypeis:

<<architecture + artifact>>
where architecture is the current phase in the logical transformation process and artifact is

the object type. Table 5-5 lists labels that are used in FOOM.

Label Examples
architectures base product, domain, product-line and product
artifacts feature, function, entity, boundary, controller, subsystem,

Table 5-5 Examples of stereotype label components to provide traceability in software
product family architecture development.

62

21N193)1Y2Jy19NpoId

91Nn323)1Y2JyaulTIonpold

aInoanydivurewoq

2IN123)1Yy2.y10Npoidaseqg

weibe|q uswAhojdaqg
T

|

uonisodwoodaq waisAsgns

s109qO ubisaQg

welbelp sse|) walsAsqns

M sawalinbay

H |
! 1 v
2IN}08MY2IY 9IeMYy0S welbeiq ased asn
<]
T I |19poN aseD asn
T
o T 1 welbeiq aosuanbas
> 5
19poN ubisaqg souyap |19pOIN SISAleuy * T
T
T
ueydalels
|19POIN 3inyea
ﬂ
* ¥...ﬂ
Areuonaig
we.beiq sse| ainjeaq 193[q0 sisAreuy
T
1 T T\ +T

welbeiq aosuanbas

welbeiq sse[D sisAjeuy

Figure 5-13 The same artifacts are used to describe the architecture at each step in the

transformation process

63

Figure 5-14 shows the three dimensional nature of FOOM. Thereisavery close
relationship between al the submodels with the object model. All submodels are internally

consistent with their siblings in each architectural level and with their descendants.

P
P o
R
D 0 D
B/ O plu
M
. . A u| ¢
Analysis Model Design Model | s ’I\ c!|T
«—1 > EINIT
; L
Feature o "1
Model D E
u
-« <« C
7
Object Model

Figure 5-14 FOOM uses the same methodologies and artifacts, in atightly coupled
relationship, to model architectures at each step in the transformation process.

54 Summary

The development and evolution of software product family models has lagged far behind
the adoption of object-oriented modelling techniques used for single systems. Fortunately,
tried and true methods do not have to be scrapped; rather, they can be modernized by

abstracting their more salient aspects and integrating them with modern methods. The

model presented here does exactly that: it introduces the feature model as an integral
component of a software architecture, provides mechanisms for migrating architectures
and instantiating products. It also provides a view of the product line sufficiently

abstracted to allow for the development of medium- and long-term evolution road maps.

65

Chapter 6
M odel Application -

A Family of Sonar Systems

This chapter coversthe step by step application of FOOM on an example application - a
family of sonar systems. Its hypotheses in modelling the architectures of a complete
product family are tested, validated and refined. Although none of these systemsis
currently in production, they are based on existing systems and future prototypes of

military antisubmarine and speciality sonars.

66

6.1 What is Sonar?

Sonar is a system that captures transmitted and reflected sound in order to detect and
locate underwater objects. An active sonar captures the reflected waves of transmitted
acoustic energy (the characteristic "ping"). Passive sonar listensto the background
acoustics of the marine environment. The primary function of any sonar isto capture
acoustic energy from the marine environment, digitize the analog input, process the data,
and display results on the operator console. Modern sonars use combinations of complex
hardware and software to perform their designated tasks and control the systems
themselves. A transducer is used to capture the acoustic energy, whether it is background
noise or reflected from a ping originating from atransmitter. The transducer also
performs the analog to digital conversion. The digitized information is then forwarded to
adigital signal processor that performs real-time algorithmic analysis to identify acoustic
features. The features are displayed on the operator console. The whole system s
controlled by the sonar controller, which also provides an interface to the command and

control systems of the ship. Figure 6-1 provides an overview of this process.

————— > Control Flow

< Sonar —> Data Flow
Controller
Transmitter | SN
/// : \\\
Va |
y Vi
L Digital Signal Operator
Processor Console

Transducer

Figure 6-1 Sonar system overview

67

In this analysis, four types of systems which are deemed to be sufficiently diverse asto
represent a good cross-section of the sonar domain are examined.

1. Hull-mounted sonar (HMS): An al-purpose type that does many tasks reasonably

well, but excels at one: detect submarines in active mode (transmitting acoustic
energy into the water and listening for echoes on a specified frequency). Itisaso
capable of performing passive detection (listen only), using different digital signal
processing (DSP) and display software than that used for active detection. The
primary computing assets are a DSP, system control and an operator console. What
characterizes this type of systemisthat its transmitter and transducer (sometimes
referred to as the "wet end") are mounted in a housing external to the ship's hull, along
the keel, about one third of the ship's length from the bow.

. Variable Depth Sonar (VDS): This system incorporates essentially the same
computing assets and functionality asan HMS. Its distinguishing feature is that its wet
end isin a separate winch-controlled tow body which is pulled behind the ship. The
reason for such a configuration is beyond the scope of this document. Suffice it to say
that it isthe only way to detect objects in the ocean below the prevalent thermal
boundary layer at a depth of about 300 to 400 meters.

. Towed-Array Sonar (TAS): This systemis a passive type with computing hardware
similar to active systems, but requiring only the software for passive DSP and displays.
Its physical configuration is characterized by a winch-controlled string of hydrophones
(underwater microphones) towed behind the ship (hence, towed array) in place of the

transducer used in HMS and VDS.

68

4. Mine Hunting Sonar (MHS): Very similar to an HMS, thistype of system operates at
much higher frequencies than other active sonars. Additionaly, its transmitter and
transducer are located at the ship's bow, rather than the more amidship positioning of
an HMS.

Figure 6-2 illustrates the various configurations of these products. In this example, the

HMS, VDS and TAS will be considered as existing products. Mine hunting will be

examined as a retrofit to the HMS and as a new product.

To support the development of the architectures for this product line, atypical systems

level description of the Hull Mounted Sonar is provided in Appendix B.

A T e S i ..‘--ii TN ,,%
T Towed Array Transmitter / Transducer

W ‘”

<)

Legend

M Transmitted Acoustic Energy (((Reflected / Background

Acoustic Energy

Figure 6-2 Types of sonar: @) Hull Mounted b) Variable depth ¢) Towed array d)
Mine hunting

69

6.2 Applying FOOM to Sonar Systems

The application of FOOM to the family of sonar systemsis done in a systematic fashion,
starting with the identification of a suitable base product. If the base product's
architecture is not defined in a form consistent with the processes outlined here, then some
architecture extraction work isrequired. Such was the case with the system identified as
the base product for our example - the hull mounted sonar. Once the base product
architecture is defined, it is revisited to adapt it to our model. Extraneous use cases are
removed, notations are modified to conform the traceability rules through stereotypes,

and, a feature model is developed.

Domain analysis identifies current and future members of the product family and the
features - user visible behaviors and attributes - for each product. Through abstraction,
differences between the products are removed so that a domain architecture, including a
domain feature model, can be developed. The importance of a product-agnostic
architecture should not be overlooked. Such a perspective permits the architect to

envision new applications in the domain, and, quite possibly, to expand the domain itself.

To develop the product line architecture, which will eventually form a framework for all
applications in the product family, variability analysis re-associates features with their
respective products. However, in the product line approach, this association is done with
the intent of reducing the code base as much as possible, applying inheritance and

parameterization as much as possible.

70

With a product line framework in place, contracts for each family member are developed
to formalize their feature content. This formalization provides a mechanism more concise
than UML's multiplicity and, given that there is a single instance of it in the model, makes

the model more maintainable.

As the architecture transformation progresses, the focus will be on the development of the
feature model. The importance of the analysis and design models is not being trivialized.
It is recognized that a solid understanding of these architectural componentsis key to
developing a successful product, but they are processes that are already well defined and

understood.

The relationship between the feature model and the analysis and design models changes as
afunction of the stage of logical transformation. The analysis model relationships
dominates the early stages - domain engineering - due to its abstract nature. The design
model will be of more interest as the product line architecture is developed, since it is at

this point that assets that will be applied to real products are being created.

6.3 Adapting the Base Product Architecture

For this application, the Hull Mounted Sonar (HMS) has been selected as the base product
for two reasons. It is known to include functionality found in several competing speciality

sonars, but, apart from submarine detection, its performance isn't comparable. Experience

71

also showsiit to be very adaptable when new functionality is required.

Adapting the architecture model of the HMS - whose data dictionary is included as
Appendix C for the purposes of documenting the detailed aspects of the architecture - to
be suitable for the logical transformation to domain and product line architectures, starts
with selecting the top 5-20% of the use cases. These use cases will identify all the major
software components[18]. A new analysis model is developed from these use cases,
modifying the model's stereotyping notation to reflect that it is the base product. From
there, the Feature Modél is constructed by transforming the analysis classes and control

objects to functions and features.

For the HM'S, the following use cases were selected:

Use Case Name Description

InitializeSystem Manage power-up sequences and initial configuration
of subsystems

ActiveDetection Detect objectsin the surrounding water

PassiveDetection Process and display income passive acoustic features

DisplayAcousticFeatures Displays acoustic features, tracks and other visuals on

the operator console

ProcessOperatorCommand Process a command from the operator console

UpdateTracks Analyze acoustic features to detect potential targets

ProcessCCSMessages Process (Rx/Tx) messages between sonar and ship's
command and control system

Table 6-1 Primary hull-mounted sonar use cases

The revised use case diagram, Figure 6-3, using only the primary use cases, highlights
what will eventually become the major components of the feature model. The use cases

become features because these are what are visible to the user. In addition to these, there

72

are also many control, processing and 1/0 objects that represent underlying functionality,

but are not directly visible to the user. In FOOM, the definition of external actors as

described in [31] is altered to reflect user visihility.

They are represented by the actorsin

the diagram and will be identified as "functions’ in the Feature Model class diagram,

Figure 6-4. Objects are created based on the actors that are not directly user visible and

designate them with the stereotype <<base product function>>. Similarly, objects are

created based on user-visible boundary objects and

<<base-product feature>>.

assign them stereotypes

AR

‘ Transmitter Transducer
Hull Mountéd Sonar
<<base-preduct usé case>>
Active Detection
\ —
<<inc|udes>>\ Signal Processor
<<includes>>
% % O \j
<base-product use case>> A
Operator Process Operator Comm and N
<<base-product use case>> Q
Display Acoustic Features <<mse-p e case>>
Update Trac ks Sonar Controller

<<includes>>

-

Passive Detection

<<base-product use case>>

<<includes>>

x

Track Processor

CCS Interface

<<base-product use case>>
Process CCS Messages

—X

Operator Console

Figure 6-3 Base product use case diagram

73

puewwo)IoresadOssad0id
<<aInjes) 1onpoid-aseqs>

|onuod

syoel]arepdn

<<aInjes) 1onpoid-aseqs> T

<<uonouny yonpoid-aseq>>

10SS820id>del L

aremajppind|doL
<<uonouny 1onpolid-aseq>>

[

T T
T T
T
ajosuo)iorelado 19]|013U0DIRUOSSWH JossadoidreubiseNbIaswH
<<uonouny 1onpoid-aseqs> | <<uonouny 1onpoid-aseqs> 0.)uod <<uonounj 1onpoid-aseq>>
T T TV
T
sainyea-o1snodyAeldsiq 8or Rl
<<aInjes} Jonpoid-aseq>> T -
T
9JBIBIUISID
<<Arepunoq jonpoid-aseq>>
T
T 1 T
uoRoSIQIAIDY || uo199)9ganIssed
abessa|NSIDSSa001d : :

Jopiwsuel] SWH

—— <<ainjes) jonpoid-aseq>>

|

ladnpsuel] swH

1onpoud-aseq>>

<<aInjes) 1onpoid-aseqs>

<aunyes) Jonpoid-aseqr> ¢

<<aInjes) 1onpoid-aseqs>

|

Figure 6-4 Base product feature model

74

6.4 Developing the Domain Feature Model

Once there is a good understanding of the base product as represented by architectural
artifacts (analysis, feature and design models), development of the domain architecture can
proceed. The object of this set of activitiesisto distil the base product architecture so
that it can be applied to all productsin the domain. The domain architecture process
begins with identifying all the products, current and future, in the domain. From that list,
commonality and variability analysisis applied to determine the features and functions that
are found in each product. This givesrise to a new domain feature model which then

helps to populate domain use case diagram.

6.4.1 Understanding the Productsin the Domain

As stipulated at the beginning of this chapter, the products in the sonar domain that will be
used to apply FOOM are: hull-mounted, variable depth, towed-array and mine-hunting
sonars. The product-feature matrix [26] in Table 6-2 identifies the base product feature,

or some version of them, that would be included in each of the domain products.

Examination of Table 6-2 reveasthat Active Detection and Passive Detection features are
not common across al products. Abstraction of this feature to Detect Acoustic Features

is sufficiently general to be applicable to al products.

75

Product Features
= 5| ,5| £l|es.| ,58 =
5 | 25| 58| 5b |2z 85 ¢
Sonar 1 5w | Bg | 85 |8§8/ 585 85§
Type %) < a o FA | <unladool 0O
Hu“ [] [] [] [] [] [] []
Mounted
Varlable [] [] [] [] [] [] []
Depth
Tovvw [] [] [] [] []
Array
Mlne [] [] [] [] [] []
Hunting

Table 6-2 Summary of features for the various sonar types

After the domain use cases have been determined, defining the underlying functions that
will support the features follows. Domain expertise is required to carry out this phase
since the architect cannot understand the inner workings of the systems without previous
firsthand experience in at least some aspect of their design. Table 6-3 lists the products

and the components required to implement them.

Note that there is afunction present which has not as yet been seen - the Winch. It is
known that, although it is not part of the base product, it does exist in other systems. It is
listed here to capture its existence to provide traceability, but will be removed as the
product features are abstracted. Also note that passive systems do not have a transmitter,
causing it to be removed from the component list for the domain. It isnot abstracted to a
common description similar to the development of the Detect Acoustic features use case.

Instead, for the purposes of the domain model, the exact source of the incoming acoustic

76

Product Functions/ Subsystem Controllers
[
8 =
o 8 S
= S g 5 % = 55 8 ()]
g B3 Bz & g = = 2| ® o) 5
8 8 5S¢l B S| 88 n 7 E T ¢ c
= E |62 @C | Ea| O |6oloo]| =
Hu” [] [] [] [] [] [] [] []
Mounted
Varlable [] [] [] [] [] [] [] [] []
Depth
Toww [] [] [] [] [] [] [] []
Array
Mlne [] [] [] [] [] [] [] []
Hunting

Table 6-3 Summary of Product Functions for various types of sonar

energy isignored and considered to be an outside stimulus. With these simplifications, the
domain functions are reduced to Transducer, Digital Signal Processor, System Controller,
Operator Console, Track Processor and Ccslnterface. With these, the domain architecture

feature model and use case diagrams can be built See Figures 6-5 and 6-6 respectively.

It should be noted that, similar to the base product model, the communication middleware
does not appear in the use case diagram. This is done solely for clarity. Sinceit isknown
that the sonar is a distributed system, the implication isthat there is some form of
distributed communication system. The communication mechanism is, however,
introduced in the domain feature model for traceability purposes. The operating systems

could be treated in a similar manner.

77

So far, data objects - <<entity>> - have been ignored in the development of the feature
models for the base product and the domain. They can vary widely from product to
product in a given domain, such as sonar, their variation is easily modelled with
inheritance and parameterization and will continue to be left out of the models presented
in this document. Other domains where entities such as databases play a prominent role

require a more thorough treatment of these object types.

0
A2
5
A1
]
Ep
2F A 2
2
53 5 A E
E(" 18 @ D E
S > g c = O
3 g e ENS)
vVa 50 79
vV a =5 9o 8
B £ e Rl
g £ g
§8 |4 £s
T O S @
M — v 8
Vo3
<}
a
2
A]
Aa 2 €
s & 2 g
58 s 3 E
20 =
g8 25 8
“— o9
= 8 £
c 2 £
88 | |53
(8] Q
EQ g3 -
S S A A
VR ° AL A
v V S3 o
9 o 2
2= ©
=
23 2
“|gQ £ 8
Es £
S o 8 E
v v
v N
“
-
° A
= A =
s 52
23
- ° g¢
@ ER
= cQ
5 £5%
AR Lal g3
® ® 58
ER o 2D
T 2 =]
£3 A2 v
—3 T E |« - 53
= = (=}
Q = Q
g¢ =
22 25
NV c c
v 2 ’E.E’
o 1]
e ss A
Ve)
a 23
© ©
8
c 2
‘T S
g5
s S
) v
A S v
52 A3
g8 — 23
== S =
5z S g
=] S 3
5 ® 3¢
g3 =
£ £
€3 3
vV E Em
vV E 5 &
Q EE
S VE

Figure 6-5 Sonar domain feature model

78

<<domain>>
Sonar System

<<domain use case>>

Detect Underwater Features

<<includ es>!

/ <domain use case>>
Process Operator Command

Operator \ :

<<domain use case>>
Initialize System

<<includes>>

<<domain use case>>
Display Acousti

O

<<domain use case>>
Update Tracks

c Features

<<do

C o

main use case>>

Rx / Tx CCS Messages

Transducer

Signal Processor

Track Processor

Marine
Environment

Sonar Controll

\

Operator Console

CCS Interface

Figure 6-6 Sonar domain use case diagram

79

6.5 Developing the Product Family Feature M odel

Now that the feature model for the domain has been developed, the next phase of the
logical transformation can proceed: developing the product line feature model. The
process starts with revisiting the product family members, performing commonality and
variability analysis to enumerate each product's features and functions. From there use
cases are identified. The goal isto build a hierarchical use case model derived from the
product family's featureq[33][35]. The domain features become the abstract superclass for
subfamilies of features found at the product line and product levels. Thisin turn generates
a hierarchy of use casesto drive the development of the product line analysis and design

models.

The process starts with building a table of all the features for all products in the family.
Each feature is examined to determine if it, or amore generalized form, can be found on
another product. If so, it is assigned the <<product line feature>> stereotype. Inturn,
features found only on specific products are designated with the <<product feature>>
stereotype. This process must be done methodically to ensure that the true relationships
between the features throughout the product family are captured. To complete the
product line feature model, <<domain function>> objects are migrated to

<<product-line function>> objects.

Table 6-4 liststhe major features in the product family and indicates the products that

would use them. They are used to build the feature model for the sonar product family.

80

See Figure 6-7.

x
n n
. S| 82|z
Feature Description T| S| | S
InitializeSystem Manage power-up sequences and N R R
initial configuration of subsystems
SetPassiveMode Set subsystems in passive detection

mode

PassiveDetection

Process and display income passive
acoustic features

Display Acoustic Features Displays acoustic features, tracks
and other visuals on the operator o | o | o | *
console

SetDisplayFormat Sets the format for displaying A U I
acoustic features

SetActiveMode Set subsystems in active detection .
mode

SetDetectionZone Set the angular window in which . N
detection will be carried out

SetTransmissionType Set the acoustic energy transmission | | |
type (CW or FM)

ActiveDetection Detect objectsin the surrounding N I B
water

ProcessCCSMessages Process (Rx/Tx) messages between
sonar and ship's command and o | o | o | *
control system

DetectSubmarines Default active configuration for N
HMS/ VDS

DetectMines Specia configuration of active N N
mode for detecting mines

DetectTorpedoes Special configuration of active N

mode for detecting torpedoes

Table 6-4 Sonar product line features (¢ = existing, * = future)

81

The product line features can be specialized versions of domain features where the
specializations vary amongst several subgroups in the product family, similar to [33][35].
An example in the sonar would be groups of active and passive sonars, and some that have

both functionalities. This alows the Subclassing of features.

The product line feature model (Figure 6-7) includes features of individual products to
provide a mechanism for correlating the products back to the product family. Two
specific areas in the feature model show multiple levels of specialization going from the
domain through to individual products. Detect Underwater Featuresand Display
Underwater Features. In situations where functions are applicable across the product line,
such as the sonar controller, the signal processor and the transducer, the association has
been left between the equivalent actor and the product line feature to avoid cluttering the

diagram.

Development of the product line use case diagram (Figure 6-8) begins with the mapping
of featuresto use cases and functionsto actors. Unlike the normal practice for single
systems, the FOOM's product line use case diagram includes inheritance, aggregation and

other associations. This can cloud the underlying architecture.

82

wask iy
<<alnjes} aulj-1onpoid>> <<S8pnjour>>
T T _H
<<S8pnjouly>
v T T 1
SpONINE}eaISS
<<alnyes} aulj-1onpoid>>
T I SaBeSSaNSIDXHXL
K T
L T
Jewio4Aedsiqias
SIBJIBIUISID <<alnjes} aulj-jonpoid>>
<Arepunoq sulj-jonpoid>>
1 1 T
T T ' TUNWwwoo
10SS2201d%eIL
lossadoudeubisenbiq <uonouny aul-PNPoIds> Jg|jouodreuos L ajosuo)iolelado
-] d: - -] d:
<<uornouny aul-}onpoid>> T <uoN}ouNy aul-yonpold>> : Srem Q109 <|0AJU0d 8ul| 1ONPoJa>>
¥
T
Spoeiarepdn sainjea-1alemiapunioaleq mw_wwmwwu_wm:wu%:&mﬂm_o
<<Sapnjoul>> <<aInyes) urewop>> <<S8pnjour>> <<8IMIES) SulaNPO.C>>
T

uonoalaganissed uonoslsganndYy
<<@Ines) aul-1onpoid>> <<aInyes} aull-onpoid>>
saopadio]1931ad EENMEEIETe]
<<aInyes) aul-1oNpoId>> <<alnyes} aulj-jonpoid>>
10NUOYYESIS uonvsIeagnNSanssed
<aInyes} aull-1anpoid>> <aInyes} aull-1anpold>>
U01129)9QAULIBWNS BANDY
<<alnjes} aulj-jonpoid>>
1euos pajuno (INH
<<jonpoid>>
1euos Aelly pamoL Teuos yidaq sjgereA Jeuos Bununy suin
<<jonpoid>> <<jonpoid>> < AG:,noavv b

83

Figure 6-7 Sonar product line feature model.

Sonar System Product-Line

C O -

<<product use case>> <<product use case>>

Torpedo Detection Submarine Detection - Passive O

<<product use case>> <<product use case>>
) Transmitter
Submarine Detection - Active Mine Detection

<<product-line use case>>
Passive Detection

<<product use case>>
Stealth Monitor

Transducer
<<productdine use cas e>>
Active Detection

includes>>___ = Signal Processor

<<product-line use case>>

Update Tracks ——

<<domain use case>>
Detect Underwater Features

O <<includes>> O

<<product-line use case>>
Initialize System

Track Processor

—
<<product-line use case>>
Sub Detection (Active) Displa

<<product-line use case>>
Mine Hunting Display

<<productdine use case>><<product-line use case>> O

Operator Active Detection Displays Torpedo Detection Displav

<<product-line use case>>

Passive Detection Display O

<<includes>> <<product-line use case>>
Set Display Format <<product use case>>
Stealth Monitor

Marine
Environment

—

productdine use case>>
Sub Detection (Passive) Display

Sonar Controller
<<product-line use case>>

Display Acoustic Features

- =~
<<|n/c|udes>> <<|nc|u{1es>>

D

<<product-line use case>>
Set Active Mode

Operator Console
<<product-line use case>>
A Set Passive Mode

S

<<product-line use case>>
Set Mode

<<product-line use case>>

CCS Interface
Rx / Tx CCS Messages

Figure 6-8 Product line use diagram

Examination of the feature model indicate that there are two features which touch on all
or most of the system: Active Detection and Passive Detection. Relying on FOOM's
definition of afeature - a user visible behavior or attribute that aggregates many
requirements, representation of afeature evolves to include aspects from both the product

line feature model and use case diagram.

Figures 6-9 and 6-10 include not only the artifacts usually found in use case diagrams, but
also include relationships between use cases and between actors. At thislevel of
granularity, the view of the entire system - the architecture - begins to take shape. Since
each mgjor feature includes the same infrastructure, namely the <<function>> objects,
the architectures of all featuresin a single product and all the products in the domain will

be internally consistent.

While developing the product line feature model, the notion of use cases as architectural
patterns [26][32] began to evolve. Like design patterns, their detailed implementation can
vary significantly, but when viewed from the domain and product line perspective, very
few differences across products emerged. What this led to was arelaxation of the rigor in
performing analysis, because, in fact, the behaviors and attributes were quite smilar. The
potential for productivity improvement is substantial, allowing architects to focus on
building the product framework and individual products, revisiting the analysis portion of
the models only for regression purposes or for introducing a feature not yet implemented

on any of the existing products.

85

<<product-line featur e>>
Active Detection

Trensmiter Marine
Environm ent

Q/J

VariableD epth
<<product use case>> /
Torpedo Detection Q Hull Mounted

<<product use case>>
Mine Detection
Signal Pr occessor

<<product line use case>>
Active Detection

<< includes>>
Operator \ Sonar Controller

<<product-line use case>>\

Update Tracks

<<product tsecase>>
Submarine Detection - Active

<<product-lire isecase>>
Display Acoustic Features

Track Processor

i

Operator Console

-

Transducer

Figure 6-9 Sonar family Active Detection feature

86

<<product-line feature>>
Underwater Feature Detection

<<praduct use case>>
Submarine Detection - Passive

Transducerk
<<productuse case>>
4/” Towed Array

Stealth Monitor Display

<<product-line use case>>
Passive Detection

<<includes>>

O
F——C

Track Processor

Operata Console

Hull Mounted \(i
Marine

Environment

Signal Processor

<<product-line use case>> /

Update Tracks
<<produc-lire wsecase>>
Operator P) Sonar Controller
Display Acoustic Features

Figure 6-10 Sonar family Passive Detection feature

87

6.6 Product Contracts

Now that the products in the family and the features available for each have been
identified, the process of building the product contracts begins. To review, these are the
invariants for association classes defining the relationship between the family members and
the feature set for the entire product line. These contracts are written in the Object

Constraint Language (OCL), a component of UML.

First look at the contract for the product line. It includes the enumeration of all the
features and functions available across al products, as well as the attributes for all
common functions and features. Using an inheritance relationship between the product
line feature contracts and the product contracts, the enumerations are passed to the sub

classed objects, viathe class invariants for each.

For the sonar family, the product line contract class invariant is:

contract <Product Line>

-- ldentify the products in the famly
Product Type enun{ HWMS, VDS, TAS, MHS};

-- identify the current set of functions avail able
-- menbers of the product |ine
Pr oduct Functi ons enun{ SonarControll er,
Si gnal Processor,
Oper at or Consol e,
TrackProcessor,
Transducer,
Transm tter,
W nch,
CCS Interface
b

-- identify the current set of features avail able
-- menbers of the product |ine
Product Features enun{ ActiveSubmari neDetecti on,
Passi veSubmar i neDet ecti on,
Det ect M nes,
Det ect Tor pedoes,
St eal t hMoni t or,
InitializeSystem
Di spl ayAcoust i cFeat ures,

88

Updat eTr acks,

Set Di spl ayFor mat ,
TxRxCcsMessages,
Set Act i veMode,
Set Passi veMbde

end contract;

A typical contract for one of the family members identifies the features and functions
required to instantiate the architecture for that product. The feature contract for the

Hull-mounted sonar (HMYS) is presented here

contract <HMS Product >

-- Specify the product's functions

sel f. Functi onsLi st->i ncl udes(SonarController)
sel f. Functi onsLi st->i ncl udes(Si gnal Processor)
sel f. Functi onsLi st ->i ncl udes(Oper at or Consol e)

and

and

and
and

sel f. Functi onsLi st ->i ncl udes(
sel f. Functi onsLi st ->i ncl udes(
sel f. Functi onsLi st ->i ncl udes(
sel f. Functi onsLi st ->i ncl udes(

TrackProcessor)
Transducer) and
Transmtter) and
CCS Interface);

-- Specify the product's required features

sel f. Requi r edFeat ur esLi st - >i ncl udes(
sel f. Requi r edFeat ur esLi st - >i ncl udes(
sel f. Requi r edFeat ur esLi st - >i ncl udes(
sel f. Requi r edFeat ur esLi st - >i ncl udes(
sel f. Requi r edFeat ur esLi st - >i ncl udes(
sel f. Requi redFeat ur esLi st - >i ncl udes(
sel f. Requi redFeat ur esLi st - >i ncl udes(
sel f. Requi redFeat ur esLi st - >i ncl udes(
sel f. Requi redFeat ur esLi st - >i ncl udes(

-- Specify the optional

sel f. Opti onal Feat uresLi st ->i ncl udes(

sel f. Opti onal Feat uresLi st ->i ncl udes(
end contract;

6.7

Act i veSubnari neDetection) and
Passi veSubmari neDet ection) and
InitializeSystem) and

Di spl ayAcousti cFeatures) and
Updat eTracks) and

Set Di spl ayFormat) and
TxRxCcsMessages) and

Set Acti veMode) and

Set Passi veMbde) ;

features to be included with this instance of the product

Detect M nes) and
Det ect Tor pedoes) ;

Building the Product Line Design M odel

With the feature model for the known members of the product family, and a set of

contracts for each product in place, the task of examining each subsystem with respect to

the role it plays for each product begins. When completed, the design model will

represent the detailed design for an entire family of products. The largest constituent of

the design model is the subsystem decomposition class diagram and detailed views of each

subsystem. This section will be limited to the more interesting subsystems and provide

89

some perspective on how the structure was developed.

6.7.1 Operator Console Subsystem

The operator console is, by far, the most complex in terms of features. But thisisto be
expected as it is, by nature, the subsystem with most interaction with the user. Start by
examining the two most obvious components of the operator console: the operator input
devices and the video display. The input devices are given a base class so that, although

not immediately evident, some reuse is possible.

The video, however, presents many possibilities for reuse, particularly in the various
display formats - the combination of graphic primitives used to convey informationin a
meaningful form. Several of the sonars have active and passive submarine detection
displays. Others have displays, such as mine hunting and stealth monitoring, that are used
on only one product. However, by grouping these features at the product line level, the
possibility for reuse is exposed that might not otherwise be so evident. Figure 6-11 shows

the Operator Console subsystem class diagram from the product line architecture.

6.7.2 Digital Signal Processor Subsystem
The digital signal processor subsystem is a grouping of very complex algorithms with very
strict real-time performance constraints. It also presents opportunities for reuse, but this

time through parameterization, not inheritance.

90

<<product-line boundary>>
Keyboard

<<product-line subsystem>>
OperatorConsole

<<product-line boundary>>
Trackball

<<product-line boundary>>
Joystick

<<product-line boundary>>

VideoDisplay S

v

<<product-line boundary>>
ConsolelnputDevice

&

<<product line control>>
OperatorConsole

<<domain feature>>
DisplayFormat

&

<<product-line function>>
CommunicationP roxy

<<product-ine feature>>
SubDetectionActiveDisplay

<<product-line feature>>
SubDetectionPassiveDisplay

<<product feature>>
StealthMonitorDisplay

<<product-line feature>>
MineHuntingDisplay

<<product feature>>
TorpedoeDetectionDisplay

Figure 6-11 The Operator Console subsystem as defined in the product line design

moddl.

The processing modules are divided along two lines, active and passive. Each uses a set
of algorithms different enough from each other that there would be no reason to
harmonize them. However, within active or passive modules, the algorithms are nearly
identical, varying according to parameter sets. In active sonar, these would include

transmission type, transmission frequency, and the number of channels collecting data

from the marine environment. Passive sonars would include a time index and the active
channelsin the transducer. Ascomplex asit isinside, from the product line perspective
the main engines of the signal processor modules can be represented with two
parameterized classes: ActiveProcessor and PassiveProcessor. Adding a
CommunicationsProxy provides a connection to the rest of the system. Figure 6-12

illustrates the product line view of the Digital Signal Processor subsystem.

<<product-line subsystem>>
Digital Signal Processor

<<product-line function>>
Com municationProxy

<<product-line function>>
DigitalSignalProcessor

- 1 ’7 - 1
))
<<algorithm>> <<algorithm>>
ActiveProcessor PassiveP rocessor

Figure 6-12 Digital Signal Processor subsystem class diagram from the product line
architecture

92

6.7.3 The Command and Control (CCYS) Interface

The command and control interface, unlike the other systems, does not vary as a function

of the product to which it belongs. Instead, it varies as a function of the external

environment to which it will be connected. The flavors of the CCS Interface are, say,

CanadianNavy, USNavy and SwissNavy. The choice of which one will be used on a given

product is directly correlated to "affiliation” of the vessel on which any given sonar is

installed. This makes the CCS Interface, in essence, a product within a product

6-13 shows the CCS interface hierarchy.

. Figure

<<product-line subsystem>>
CCS Interface

<<product-line feature >>
Ccslinterface

<<product feature >>
CcsCanadianNavy

<<product feature>>
CcsUsNawy

<<product feature>>
CcsSwissNavy

Figure 6-13 Command and Control Interface subsystem from the product line

architecture.

93

6.7.4 Software Deployment

With the software architecture for the product family in place, a deployment diagramis
developed to understand the relationship between the software and the hardware. Until
this point, it has been assumed that physical computing assets, of some form, would be

available on which the software would run. Performance requirements/ constraints were

accounted for in the design.

The sonar product line deployment diagram shows the target nodes on which the software

components will be deployed. From this, software architects and systems engineers have a

common understanding of the types of hardware family members will require.

«product-line node»
Sonar

«product-line component»
Sonar Controller Subsystem

«domain node»
Operator Console
«product-line component»
TrackProcessor Subsystem
«product-line component»
OperatorConsole Subsystem
«product-line component»
N Cesinterface Subsystem

«domain node»
Signal Processor

«product-line component»
DigitalSignalProcessor Subsystem

-End2
1
-Endl
1
1
«domain node»
Distributed Communication Infrastructure
«product-line component»
Communications Subsystem
1 11
0.1
1
«product-line node» «product-line node» «domain node»
Winch Controller Sonar Transmitter Controller Sonar Transducer

«product-line component> «product-line component»
WinchControllerSubsystem TransmitterControllerSubsystem

«product-line component»
TransducerController Subsystem

Figure 6-14 Sonar product-line deployment diagram

94

6.8 Summary

In this chapter FOOM has been applied to a family of sonars as atest case. The model
was then systematically applied starting with a candidate for the base product, then
adapting its architecture so it is suitable for transformation to a domain and product line
architecture. Domain analysis identified other products as members of the product family.
From there commonality analysis permitted the development a domain architecture that
was product-agnostic. The first part of the transformation relied mostly on the analysis
portion of the USP to support the detailed architectura evolution. The design model,
particularly the subsystem decomposition, was developed primarily as a regression
mechanism to ensure the models were internally consistent as the transformation

progressed from one stage to the next.

Evolution of the product line architecture is where features in analysis served primarily as
design patterns for similar functionalities across products. The product line feature model
to assisted in identifying the components in each subsystem. Reviewing each feature

model exposed areas for productivity gains from reuse, inheritance and parameterization.

Throughout the process, the feature model served as the focus of the modelling effort.
Transformation of features and functions to model components during analysis provided a
connection between the user visible aspects of the system, and the infrastructure

underneath.

95

Finally, a series of processes have been provided that couple architecture development and

evolution with a modelling standard that is equally applicable at every step of the

transformation. The processes themselves and al their artifacts created along the way are

object-oriented.

96

Chapter 7

Conclusion

In thiswork, a set of processes has been developed that will assist an organization to
adopt a product line practice. This practice will be grounded in the most current of
modelling technologies, lend itself to constant evolution, and provide a high degree of

customer focus.

97

7.1 Evaluation of FOOM

FOOM represents the extension and amalgamation of several proven methodologiesto
provide a set of feature-based architecture-centric development processes. It adoptsthe
UML notation using its extension mechanisms to provide an extralayer of traceability.
And, its macroscopic view of the product line exposes opportunities for reuse that might

not otherwise be apparent.

7.1.1 Feature-based Development

FOOM has extended the notion of a feature beyond that of FODA. A feature is not only
the view of a system and its components from the user's perspective. It also incorporates
many of the architectural assets and the relationships between them. This makes features a

form of architectural pattern.

FOOM takes the idea of a feature and extends the USP to include a feature model as a
peer to the use case, analysis and design models. A strong correlation has been
established between features and use cases providing a direct link for featuresto drive the

development of an entire product family.

These aspects of FOOM can be contrasted to FODA which does not provide a clear view
on the relationship between the feature model and any development process -
object-oriented or otherwise. FODA also does not put forth a set of processes for
evolving features, let alone architectures beyond the domain to product lines and

98

individual applications.

7.1.2 Architecture-centric System and Product Line Development

Experience has shown that a well-defined stable architecture is key to the successful
development of individual systems. Product line development implies that the resulting
architectures must incorporate current, and known and unknown future projects.
However, as new products and features are introduced, the architectures must be
sufficiently malleable as to not "break" existing products. FOOM's high level view of
software systems provides architects and designers alike with a view that forces themto

examine the ripple effect of any new feature or change.

KobrA on the other hand takes a diametrically opposed view. It generates a"hardwired”
architecture early on in the development process. The intention isto free designers from
worrying about big-picture issues, allowing them to concentrate instead on developing
individual components to be plugged into a system. Thisignorance of system level issues
can preclude an individual designer from adequately engaging architects as new features

and products are introduced.

FOOM's focus on architecture provides a seamless mechanism for adding a new feature to
one or more of the products or in the creation of new products, such as the addition of
minehunting to the HMS. The sonar example demonstrates this aspect of FOOM with the

mine hunting feature. In developing the product line architecture, no distinction was made

99

between existing and future features and / or systems. Thisimplies that a product line
evolutionary road map can be built and maintained from the earliest stages of product
development. FODA does provide mechanisms for evolving features, but does not put

them in the context individual products.

FOOM's common architecture approach can facilitate the creation of a suite of systems
built from several members of the same family. In the case of sonar, this could be a
system that integrates separate mine hunting, towed array and hull mounted products on
the same ship. Their commonalties make possible the sharing of acquisition, signal
processing, display and control functionalities. Moreover, entirely new "integration

features' can be built from the artifacts of existing features and functions.

7.1.3 Application Generation

Mechanisms and languages for generating new product architectures based on the product
line architecture are built into FOOM. The feature lists at the product line and product
provide contracts for specify the features of new products; OCL defined guard conditions
and constraints provide the required precision at the product level. The UML / OCL and

the USP form the language for generating product architectures.

FAST provides placeholders for these mechanisms/ languages but does not define them:
thisisleft to the development team to do. FODA focuses primarily on the domain aspects

of aproduct family, not providing specific mechanisms for application generation. KobrA

100

integrates decision models into the product line framework as text documents apart from

the models themsdlves.

7.1.4 Adoption of the USP and UM L

FOOM's underlying processes rely heavily on the USP for building each of the required
architectures, making it easier to incorporate into an organization's software development
processes. Use of the UML - the de facto industry standard notation - eliminates the need
for learning new forms of "boxology" as designers move between organizations. Such
standardization permits the use of third party tools for building models, tracking
requirements and imposing configuration management and version control.
Methodologies like FAST require organizations to build tools to support the process,

consuming efforts of designersin tool rather than product development.

7.2 Limitations of FOOM

In its current form, FOOM does not explicitly provide guidance for instantiating a product
line architectures where a base product does not exist. With that said, the domain analysis
activites of FODA do provide insightsinto how thisis done. These activities need to be
further formalized within FOOM to make the case of the inroduction of a new product

line, or even a new domain, manageable

One aspect of product line engineering that has not been covered in thisfirst treatment of
FOOM isthe addition of afeature to an existing product family. The expectation isthat

101

analysis at the domain level would have to be conducted to determine that any new feature
would in fact be within the family's domain. Following that, rigorous analysis would be
required to determine how the new feature would propogate through the family. The

details of this process would need to be examined in ongoing development of FOOM.

7.3 Conference Feedback
Two papery 37][38] based on the work in this thesis were presented / published in
connection two conferences. Several interesting issues were raised; details of the ensuing

discussions follow.

7.3.1 Toolsfor FOOM

One line of inquiry revolved around whether a TOOL had been developed specifically for
FOOM. As previoudly stated, one of the primary objectives of thiswork wasto leverage
existing tools such as Rational Rose, thus short-circuiting the notion of building a
proprietary tool. Nonetheless, tools such as Rose were found to be wanting in their

malleabilty to adapt outside their hardwired views.

Another issue invloved the automated generation of models, designs and code based on

the OCL feature contracts. To date, the author has no knowledge of third-party tools

with this functionality. Maybe commercial vendors will offer such afeature in the future.

102

7.3.2 Architecture Validation

Another question was raised as to whether FOOM validates the generated product
architectures. Theinitial response was that domain expertise was always required,
meaning that some human interaction is always necessary. Subsequent reflection provided
the same response, however, architects might be able to use objective measures such as

requirements and quality metrics to provide an initial objective indicator.

7.3.3 Non-functional Requirements

Since FOOM hasiits base in the USP and the UML, non-functional requirements can be
accommodated for a product line in the same manner as is done for single products -
organizational policy, standard practices, etc. A caveat here would be that only
non-functional requirements that apply to all or most of the products in the family be

included in the family's architecture.

7.3.4 Effectiveness of FOOM

There was some interest in whether a control study had been done to compare FOOM to
current methods (or lack of). Thefirst step was to develop FOOM itself, permitting a
control study to determine if it does infact provide the economies it espouses.The SEI has
done some research[36] into the payback timeline for introducing a product line practice:

their results indicate that economies as high as 30% are achievable.

103

7.4 Contributions

Following are the research contibutions of FOOM:

A feature model has been added to the Unified Software Development Process (USP).
The purpose of the feature model is manifold. Its primary function isto formalize the

relationship between the user's perception of the system and how developers go about

its design and implementation. It also provides atighter coupling between the analysis
and design segments of the USP. Finally, at the domain and product line levels, it

highlights possibilities for reuse that might not otherwise be evident.

The complement to the previous item is that the USP has been "bolted" onto FODA.
FODA does not provide detailed processes for the generation of product line and

product architectures.

A set of processes has been established by extending FODA and the Horseshoe Model
and building on techniques from FAST. These processes assist architects in extracting
an architecture from a single product, examining it in the context of that product's
domain. That architecture is designed to be evolved over time to generate multiple

products and multiple variants of each member of the family.

FOOM has provided a set of mechanisms for generting products that are based, in

part, on the OCL, an existing precision component of the UML.

104

* FOOM has presented constructs that are suitable for incorporation into a UML profile

for product lines.

75 FutureWork

Aswith all research efforts, every last aspect of a problem can't be examined in one try.

There were several areas that would have merited further investigation, but were beyond

thisinitial treatment. Additional work needsto be carried out that will further integrate

the UML enhancements and the integration of the feature model into the USP. These

include:

* Application of FOOM in another domain - This thesis has applied FOOM in only one
domain - sonar. Modeling a different family of products can further test the original

hypotheses.

* Refine and expand the role of the OCL in FOOM - The OCL has been introduced as a
mechanism for formally specifying individual products. Application generation rules
need to be further studied and expanded. Incorporating the set theory concepts [34]

and decision models [35] could prove useful in this area.

* Developing a profile for software product lines. Profiles provide away of grouping
UML extensions, such as stereotypes and tagged values, and applying themto a
problem domain [31]. FOOM has introduced a raft of extensions that need to be

further refined and organized so that they may be standardized and put in aform that is

105

incorporated into third-party tools.

Assess the effect of the coarse granularity in this model - On afirst pass, the finer
details of implementation were hidden. Further analysis needs to be done to determine
if the resulting architectures can be markedly improved with an incremental refinement

in detail.

Investigate the possibility of interfacing FOOM with KobrA - there are many
similarities between the artifacts generated by FOOM and KobrA. An opportunity

may exist for FOOM to provide a greater architecture perspective to KobrA.

Further use of third party tools - In developing FOOM, a simple modelling version of
aUML CASE tool was used. But severa UML tools are also able to generate code.
Using asingle tool to both model al architecturesin the product and then generate
code for each product could provide additional economies of scale than simply

building models.

106

Bibliography

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

David M. Weiss, Chi Tau Robert Lai, Software Product Line Engineering:
A Family-Based Software Devel opment Process, Addison-Wesley, 1999

P. Clements, L. Northrup, Software Product Lines. Practices and Patterns,
Addison-Wedley, 2002

K. Kang, et a, FORM: A feature-oriented reuse method with
domain-specific reference architectures, Annals of Software Engineering,
5:143--168, 1998

G. Booch, J. Rumbaugh, I. Jacobson, The Unified Modelling Language
User Guide, Addison Wesley, 1999

R. Kazman, The Architecture Tradeoff Analysis Method, Proceeding of
|ICSE'98

J. Bergey, L. O'Brien, D. Smith, Mining Existing Assets for Software
Product Lines, Carnegie Mellon Software Engineering Institute, Technical
Note CMU/SEI-2000-TN-008

|. Jacobson, M. Griss, Patrik Jonsson, Software Reuse: Architecture,
Process and Organization for Business Success, Addison Wesley, 1997

|. Jacobson, G. Booch, J. Rumbaugh, The Unified Software Devel opment
Process, Addison Wedley, 1999

C. Hofmeister, R. Nord, D. Soni, Applied Software Architecture, Addison
Wesley, 2000

J. Bayer, C. Gacek, T. Widen, PULSE-I: Deriving Instances from a Product
Line Infrastructure, Proceedings of 7th IEEE International Conference and
Workshop on the Engineering of Computer Based Systems, April, 2000

B. Bruegge, A. Dutoit, Object-Oriented Software Engineering: Conquering
Complex and Changing Systems, Prentice Hall, 2000

J. Warmer, A. Kleppe, The Object Constraint Language: Precise Modelling
With UML, Addison Wesley, 1999

P. America, W. van der Sterren, Dealing with Evolution in Family
Architectures, Proceedings of 13th European Conference on
Object-Oriented Programming, June 1999

107

[14]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

G. Chastek et a, Product Line Analysis: A Practical Introduction, Carnegie
Mellon Software Engineering Institute, Technical Report
CMU/SEI-2001-TR-001

D. Weiss, Commonality Analysis. A Systematic Process for Defining
Families, Proceedings of ESPRIT ARES Workshop 1998, Springer 1998,
ISBN 3-540-64916-6

J. Coplien, D. Hoffman, and D. Weiss, Commonality and Variability in
Software Engineering, |EEE Software 15(6), November, 1998

F. Brooks, The Mythical Man-Month, Anniversary Edition, Addison Wesley,
1995

R. Kazman, S.G. Woods, S.J. Carriere, Requirements for Integrating
Software Architecture and Recovery Models. CORUM 11, 1998 Working
Conference on Reverse Engineering.

Carnegie Mellon Software Engineering Institute, Product Line Analysis,
http://www.sel.cmu.edu/plp/plp_analysis.html

M. Clauss, Modelling Variability with UML, Proceedings of the Young
Resear chers Workshop 2001, ISBN = 3-00-008419-3

K. Kang, et a, Feature-Oriented Domain Analysis (FODA) Feasibility
Sudy, Technical Report No. CMU/SEI-90-TR-2, November 1990

L. Bass, et a, Third Product Line Practice Workshop Report, Software
Engineering Ingtitute Technical Report No. CMU/SEI-99-TR-003,
March 1999

Bass, Clements, and Kazman. Software Architecture in Practice,
Addison-Wedley, 1997

J. Bayer, et a, PULSE: A Methodology to Develop Software Product Lines,
Proceedings of Symposium on Software Reusability, May 1999

J. Bosch, Design & Use of Software Architectures. Adopting and evolving a
product-line approach, Addison-Wesey, 2000

J. Bayer, C. Gacek, T. Widen, PULSE-I: Deriving Instances from a Product
Line Infrastructure, Proceedings of 7th IEEE International Conference and
Workshop on the Engineering of Computer Based Systems, April, 2000

J. Bayer, D. Muthig, T. Widen, Customizable Domain Analysis, GCSE ' 99,
Erfurt, Germany, September 1999

108

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

C. Atkinson, J. Bayer, D. Muthig, Component-Based Product Line
Development: The KobrA Approach, Fraunhofer Institute for Experimental
Software Engineering

C. Atkinson, et a, Component-Based Product Line Engineering with UML,
Addison-Wedley, 2002

H. Gomaa, Designing Concurrent, Distributed and Real-Time Applications
with UML, Addison-Wesley, 2000

R.JA. Buhr, "Use Case Maps as Architectural Entities for Complex
Systems’, Transactions on Software Engineering, |EEE, Vol. 24, No. 12,
December 1998, pp. 1131-1155.

H. Gomaa, Modeling Software Product Lineswith UML, Proceedings of the
Second International Workshop on Software Product Lines. Economics,
Architectures, and Implications, Toronto, Canada, May 2001, pp. 27--31
|ESE-Report. No. 051.01/E

J.M. Thompson, M.P.E. Heimdahl, Ideas on How Product-Line Engineering
Can be Extended, Proceedings of the Second International Workshop on
Software Product Lines: Economics, Architectures, and Implications,
Toronto, Canada, May 2001, pp. |ESE-Report. No. 051.01/E

Z. Stephenson, J. McDermid, Tracing Features With Decision Models,
Proceedings of the Second International Workshop on Software Product
Lines: Economics, Architectures, and Implications, Toronto, Canada, May
2001, pp. |ESE-Report. No. 051.01/E

S. Cohen, Predicting When Product Line Investment Pays, Proceedings of
the Second International Workshop on Software Product Lines: Economics,
Architectures, and Implications, Toronto, Canada, May 2001, pp.
|ESE-Report. No. 051.01/E

S. Ajila, P.J. Tierney, The FOOM Method — Modelling Software Product
Linesin an Industrial Setting, Proceedings of the 2002 International
Conference on Software Engineering and Practice, Las Vegas, Nevada,
June 2002

P.J. Tierney, S. Ajila, FOOM - Feature-based object-oriented modeling:
Implementation of a processto extract and extend software product line
architectures, Proceedings of the 8th International Conference on
Information Systems Analysis and Synthesis, International Institute of
Informatics and Systemics, pp. 510-515, Orlando, Florida, July 2002.

109

Appendix A

Acronyms
CASE Computer Aided Software Engineering
CCs Command and Control (System) Interface
DSP Dogital Signal Processor
FODA Feature Oriented Domain Analysis
FOOM Feature-based Object Oriented Modelling
HMS Hull Mounted Sonar
MHS Mine Hunting Sonar
OCL Object Congtraint Language
(0[] Object Oriented
OOAD Object Oriented Analysis & Design
SEI Software Engineering Institute
TAS Towed Array Sonar
UML Unified Modelling Language
USP Unified Software Development Process
VDS Variable Depth Sonar

110

Appendix B
Hull M ounted Sonar

System Specification

111

Background

The Hull Mounted Sonar (HMYS) is an active sonar that is responsible for managing a
transducer (transmitter & receiver) such that data may be collected, processed, and
presented to an operator. This allows the operator to maintain an awareness of the activity
in the marine environment around the transducer. The operator interacts with the sonar
on the ship to which the transducer is attached. The sonar is also connected to other
systems on the same ship, such as the Command & Control System (CCS) and the
underwater telephone (UWT). For configurations where two instances of the sonar may
be operating on the same ship, i.e. one Hull Mounted Sonar, and HM S and one Variable
Depth Sonar (VDS), each instance will co-ordinate its activities -- specifically,

transmission -- with the other.

The sonar isinstalled onboard ship in physically separated compartments. an operator
space; an equipment space; and a sonar trunk. Cabling is used to connect the elements
together. The operator space houses the operator interface equipment of the sonar and is
shared by the interfaces to other systems; it provides an environment that allows the sonar
operators and ship's staff to co-ordinate the activities of al the systems. The equipment
gpace is used to house the remaining (bulkier) components of the sonar. The sonar trunk
houses the hull ouitfit, the part of the system that actually comes into contact with the

water.

112

HM S Behavior Description

Intermingled amongst the documents are descriptions of behaviors that correlate well to
Use Cases. They include operational, maintenance, and training scenarios. This report will
only document the operational use cases. For the purposes of this project, it isfelt that the
effect of including the training and maintenance scenarios would be trivial, and only serve

to obscure the primary focus, the operational scenarios.

The operational scenarios that will be considered in this study are:

Starting up

* Processing passive data (including tracking)
* Processing active data (including tracking)
* Manipulating operational displays

* Adjusting operational parameters

e Controlling operation

* Providing notation

* Pinging

* Monitoring health

* Handling CCS

113

HM S Required Functionality
The system specifications identify activities to be carried out by the Sonar. These
activities are:

* Collect acoustic data

* Generate passive data

* Generate active data

* Save DCSdata

* Process passive tracks

* Process active tracks

* Present audio

* Present visuals

* Select presentation

e Set parameters

* Apply control

e Accept notation

* Generate ping

* Monitor health

* Handle CCS

* Handle environment

* Diagnose errors

114

Appendix C
Hull M ounted Sonar

Data Dictionary

115

M odel Element

Entity Classes

DigitizedData
Container base-class for the result of the analog-to-digital conversion output from the
Transducer

Invariant:

DigitizedActiveData
Container for the result of the analog-to-digital conversion active output from the
Transducer

I nvariant:
self.DataBlock->size >= 1

DigitizedPassiveData
Container for the result of the analog-to-digital conversion passive output from the
Transducer

I nvariant:
self.DataBlock->size >= 1

DisplayReadyAcousticData
ProcessedData that has been formatted for display.

I nvariant:
self.DataBlock->size >= 1

ProcessedData

Base-class for data that has been processed by the digital signal processor (DSP).
Invariant: N/A

ProcessedActiveData

Active data that has been processed by the digital signal processor (DSP).

I nvariant:
self. DataBlock->size >= 1

116

ProcessedPassiveData
Passive data that has been processed by the digital signal processor (DSP).

I nvariant:
self. DataBlock->size >= 1

ProcessingParameters
A data store of transmission parameters for the current ping and ambient environmental
conditions (water temperature, salinity, etc.)

Invariant:

{
ShipSpeed >= 0 and ShipSpeed <= SHIP_MAX_SPEED} and

{
{ShipHeading >= 0 and ShipHeading < 360} and

{StartChannel >= 0 and StartChannel < HMS_NUM_CHANNELS} and
{TxWindow >=1 and TxWindow < HMS_NUM_CHANNELS} and
{VOSIW >= 1400 and VOSIW <= 1600}

}

SonarTrack

Super class for a persisant acoustic feature. 1n active mode, it has been present in at
least three successive "pings'. In passive mode, it is an acoustic feature that, at any
given moment in time, stands out from the background ambient noise

Invariant:

self.Bearing->size = 1 and
self.Intensity->size = 1 and
self.ContactType->size = 1

ActiveTrack
An acoustic feature that has been present in at least three successive "pings'.

Invariant:
self.PingFirstDetected->size = 1 and
self.PingLastDetected->size = 1

PassiveTrack
An acoustic feature that, at any given moment in time, stands out from the background
ambient noise

I nvariant:
self. TimeFirstDetected->size = 1 and
self.TimeLastDetected->size = 1

117

TrackDatabase
Thelist of al Tracks currently known to the system

Invariant:
{

{self.NumberActiveTracks >= 0 and

self. NumberActiveTracks <= HMS_MAX_ACTIVE_TRACKS}

and

{self.NumberPassiveTracks >= 0 and

self. NumberPassiveTracks <= HMS_MAX_PASSIVE_TRACKS}

and

self. TrackList->size = self.NumberActiveTracks + self.NumberPassiveTracks

}

CcsMessage
Container for messages transferred over the Ccslnterface

I nvariant:
self.Contents->size = 1

ControlMessage
Container for control messages transferred between the various subsystems in the
Sonar

I nvariant:
self.Contents->size = 1

PreparedData
Container for data at an intermediate stage of the signal processing

Invariant:
self.PreparedDataBuffer->size = 1

Boundary Classes

Ccslnterface
The interface between the sonar system and the ship's command and control system

Invariant:
self.IncomingMessageBuffer->size >= 1 and
self.OutgoingMessageBuffer->size >= 1 and
self.IsActive->size = 1

118

Consolel nputDevice
A base class for the operator console input devices (keyboard, joystick, trackball)

Invariant:

self.DeviceType->size = 1 and

self.DeviceType = INPUTDEVICE_KEYBOARD or
self.DeviceType = INPUTDEVICE_TRACKBALL or
self.DeviceType = INPUTDEVICE_JOYSTICK

Transmitter Controller
Interface to the acoustic energy transmitter. It isonly used during active detection.

Invariant:

{
{TxStartChannel >= 0 and

TxStartChannel < HMS_MAX_CHANNELS}
and
{TxNumberChannels >= 1 and
TxNumberChannels < HMS_MAX_CHANNELS}
and
{TxType = TXTYPE_CW or

TxType = TXTYPE_FM}

}

Transducer Controller
Interface to the transducer (the device that coverts analog acoustic energy into a digital
signal). Used in both active and passive detection.

Invariant:
self.RxFrequency->size = 1
self.RxMode->size = 1

Tcpl pSocket
Encapsulation of the Tcplp sockets.

Invariant:
self.FileDescriptor > -1 and
self.FileDescriptor <= MAX_FILE_DESCRIPTOR_VALUE

119

Control Classes

InitializeSystem

Take the entire system from a powered-down state to the default passive detection
mode. Includes powering up and initialization of all subsystems. transmitter /
transducer, DSP, sonar controller and operator console

Invariant:

PassiveDetection
Detect sources of underwater acoustic energy by listening only

Invariant:

ActiveDetection
One of the primary detection modes of sonar, using transmitted acoustic energy
(pinging) to assist in the detection of underwater objects

Invariant:

ProcessCcsMessage
Receive incoming message from ship and process or Prepare a message and send to the
ship's command and control system

Invariant:

SetActiveMode
Put the system and its subsystems in active detection mode

Invariant:

SetPassveMode
Put the system and its subsystems in passive detection mode

Invariant:

UpdateTracks
Add/ remove/ update the tracks in the track database

Invariant:

120

Digital S gnal Processor
The subsystem that converts the raw digitized data into features using digital filters and
frequency-domain transformations

Invariant:

self.UnpackedDataBuffer->size = 1 and
self.PreparedActiveDataBuffer->size >= 1 and
self.PreparedPassiveDataBuffer->size >= 1 and
self.DataPreparationModule->size = 1 and
self.PassiveDataDspModule->size = 1 and
self.ProcessedPassiveDataBuffer->size >= 1 and
self. ActiveDataDspModule->size = 1 and
self.ProcessedActiveDataBuffer->size >= 1

SonarController
The subsystem that controls the behavior of the sonar. It also monitors the status of
the subsystems

Invariant:
{
{self.SystemMode = DEFAULT_MODE or
self. SystemMode = SYSTEMMODE_ACTIVE or
self. SystemMode = SYSTEMMODE_PASSIVE
}and
self.HmsProcessedData->size >= 1 and
self.HmsPostProcessor->size = 1 and
self.HmsDisplayReadyData->size >= 1 and
self.HmsTrackProcessor->size >= 1 and
self.HmsTrackDatabase->size = 1 and
self. HmsCcslnterface->size = 1 and
self. IncomingCcsMsgBuffer->size >= 1 and
self. OutgoingCcsMsgBuffer->size >= 1

TrackProcessor
Module that analyzes incoming acoustic data looking for potential features. Maintain
and update the history of features detected

I nvariant:
self.ProcessedDataBuffer->size >= 1

121

OperatorConsole
The man-machine-interface for acquiring operator input and displaying information to
operator

Invariant:

self. SystemMode->size = 1 and
self.ControlMessageBuffer->size >= 1 and
self.CurrentDisplayFormat->size = 1 and
self.IncomingCcsMessageBuffer->size >= 1 and
self.OutgoingCcsMessageBuffer->size >= 1 and
self.IncomingControlMessageBuffer->size >= 1 and
self.OutgoingControlMessageBuffer->size >= 1 and
self.Display->size = 1 and

self.Keyboard->size = 1 and

self. TrackBall->size = 1 and

self.Joystick->size = 1

DataPrepar ationProcessor
Unpacks raw digitized data and preparesit for further processing

I nvariant:
self.UnpackedDataBlock->size = 1 and
self.ProcessedDataBlock->size = 1

PassiveDataProcessor
Module to perform passive processing in the DSP

Invariant:
self.InputBuffer->size = 1
self.OutputBuffer->size = 1

ActiveDataProcessor
Module to perform passive processing in the DSP

Invariant:
self.InputBuffer->size = 1
self.OutputBuffer->size = 1

122

Attributes

DataBlock

ShipSpeed
ShipHeading
StartChannel

TxWindow

VOSIW

Bearing

Intensity
ContactType
Range
FirstPingDetected
LastPingDetected

TimeFirstDetected
TimeL astDetected

NumberActiveTracks
NumberPassiveTracks

TrackList
Contents

PreparedDataBuffer

DeviceType

TxFrequency
TxType
TxStartChannel

TxNumberOfChannels

ControlM essageBuffer

A structure containing the various components
of an <<entity>> object

The speed of the ship in knots

The True heading of the ship

Thefirst stave-channel in the transmission
window

The number of stavesin the transmission
window

Velocity Of Sound In Water - calculated asa
function of environmental factors, including
temperature, salinity, depth, etc.

Relative bearing of the track to the ship

The strength of the contact

| dentification of the type of contact

Distance to target at the time of the last ping
Ping number when the target was first detected
Most recent ping number when the target was
detected

The time a passive track was first detected
The time a passive track was last detected
The number of active tracks currently stored
The number of passive tracks currently stored
The collection of tracks

A structure containing the contents of a CCS
message

Structure containing the results of the data
preparation module in the DSP

Enum defining the type of operator console
input device

The operating frequency of the transmitter
The type of transmission (CW or FM)
Thefirst stave channel in the transmission
window

The number of stave channelsin the
transmission window

A buffer to contain control messages. The size
will be influenced by the real-time behavior of
the system.

123

RxFrequency

RxMode
ProcessingMode

UnpackedDataBuffer

PreparedActiveDataBuffer
PreparedPassiveDataBuffer
DataPreparationModule

PassiveDataDspModule

ProcessedPassiveDataBuffer
ActiveDataDspModule

ProcessedActiveDataBuffer
SystemMode
HmsProcessedData
HmsPostProcessor

HmsDisplayReadyData
HmsT rackProcessor

HmsTrackDatabase
ProcessedDataBuffer
CurrentDisplayFormat

IncomingCcsM essageBuffer

OutgoingCcsM essageBuffer

Display

Consolel nputDevice
Keyboard

TrackBall

Joystick
UnpackedDataBlock
DestinationDataBlock :
PreparedData*

The frequency at which the transducer should
listen. In active mode, it will be the same as
TxFrequency

Transmission mode - CW or FM

Processing mode of the DSP - active or passive

Intermediate storage buffer for unpacked datain
DSP

Intermediate storage buffer for ??? datain DSP
Intermediate storage buffer for ??? datain DSP
Software module to prepare raw acoustic data
for the DSP

DSP software module to perform passive
processing

Intermediate storage buffer for ??? datain DSP
DSP software module to perform passive
processing

Intermediate storage buffer for ??? datain DSP
The mode of the system - active or passive
Intermediate storage for processed data
Module to perform additional processing on the
DSP output

Acoustic data formatted for display on the
Operator Console

Module to analyze acoustic data - tracks are
added, updated or deleted.

Collection of SonarTracks

Base class for processed data

The display format currently active on the
Operator Console

Collection of incoming CCS messages. Size will
be a function of the real-time behavior of the
system

Collection of outgoing CCS messages. Size will
be a function of the real-time behavior of the
system

Video display interface

Base class for console input devices

Keyboard interface

Trackball interface

Joystick interface

DataPrepar ationProcessor

DataPrepar ationProcessor

124

InputBuffer : PreparedData PassiveDataProcessor

OutputBuffer : PassiveDataProcessor
ProcessedPassiveData

InputBuffer : PreparedData ActiveDataProcessor
OutputBuffer : ActiveDataProcessor
ProcessedActiveData

Consolel nputDevice:: Acquirel nput()
Capture input from a console device and forward for processing

VideoDisplay::PresentVisuas() : void
Display acoustic features, tracks, and other information on the console display.

PostProcessor::PerformPostProcessing() : void
Perform post-processing on DSP output if required for current display formeat.

TrackProcessor::ProcessAcousticFeatureData() : void
Analyze DSP processed data for features.

TrackProcessor::UpdateTracks() : void
Update TreackDatabase as required.

TrackDatabase::AddActiveTrack(SonarTrack* track) : bool
Add an active track to the track database
post: TrackDatabase->includes(track)

TrackDatabase::AddPassiveTrack (SonarTrack* track) : bool
Add a passive track to the track database
post: TrackDatabase->includes(track)

TrackDatabase::UpdateTrack (SonarTrack* track, struct trackinfo) : bool
Update a track's contents.
post: TrackDatabase.track->Contents = trackinfo

TrackDatabase::DeleteTrack (SonarTrack* track) : bool
Remove atrack from the track database
not. TrackDatabase->includes(track)

125

Ccslnterface::Initialize() : bool
Initialize the Command and Control interface.
post: Ccslnterface.lsActive()

Ccslnterface::ReceiveCcsMessage() : int
Receive messages from the ship.

Ccslnterface::ProcessCcsMessage() : void
Process messages from the ship.

Ccslnterface:: SendCcsMessage() : int
Send messages to the ship.

TcplpSocket::recv(int FileDescriptor, char* Buffer, int BufferSize) : int
Receive data on the socket.
post: TcplpSocket.BytesReceived = BufferSize

TcplpSocket::send(int FileDescriptor, char* Buffer, int BufferSize) : int
Send data on the socket.
post: TcplpSocket.BytesSent = BufferSize

HmsOperatorConsole::ProcessOperatorInput() : void
Determine action required by operator request, then execute.

HmsOperatorConsole:: SetDisplayFormat(enum displayformat) : bool
Configure the operator console display for the requested format.
post: OperatorConsole.CurrentDisplayFormat = displayformat

HmsOperatorConsole::ProcessControlM essages() : bool
Parse incoming control messages and execute requested action

ProcessingParameters.:UpdateParameters(int Parameter, void ParameterVaue) : void
Update the value of the specified parameter.
post: ProcessingParameters.Parameter = ParameterValue

ProcessingParameters.: GetParameters(int Parameter, void ParameterValue) : void
Retrieve the value of the specified parameter.

DataPreparationProcessor::UnpackRawData() : void
Unpack incoming data from transducer.

DataPreparationProcessor::PrepareData() : void
Prepare unpacked data for DSP.

126

ActiveDataProcessor::ProcessActiveData() : void
Apply DSP algorithms to incoming active data.

PassiveDataProcessor:: ProcessPassiveData() : void
Apply DSP algorithms to incoming passive data.

HmsTransmitterController::Initialize() : bool
Initialize transmitter.

[self.TxFrequency = TXFREQ_DEFAULT and
self. TxType = TXTYPE_DEFAULT and
self.TxStartC hannel >= 0 and
self.TxStartChannel < MAX_CHANNELS and
self.TxNumberChannels > 0 and

self. TxNumberOfChannels < MAX_CHANNELS]

HmsTransmitterController::InitiatePing() : bool
Transmit acousting energy into marine environment ("ping").

HmsTransmitterController:: SetTransmissionParameters(enum Parameter, void
ParameterValue) : bool

Update the requested parameter's value.

post: HmsTransmitterController.Parameter = ParameterValue

HmsDigital SignalProcessor::Initialize() : bool
Initialize the DSP.

HmsDigital SignalProcessor:: SetConfiguration(enum Configuration) : bool
Set the DSP's configuration - active or passive processing.
post: HmsDigitalSignalProcessor.ProcessingMode = Configuration

HmsDigital SignalProcessor::PrepareRawData() : void
Call the DataPreparationProcessor to unpack prepare the raw data

HmsDigital SignalProcessor::ProcessActiveData() : void
Call the active data processor.

HmsDigital SignalProcessor::ProcessPassiveData() : void
Call the passive data processor.

HmsDigital SignalProcessor:: SendProcessedData() : void
Send processed data to sonar controller.
post: ProcessedDataSocket.BytesSent = ProcessedDataSocket.BufferSize

HmsSonarController::ReceiveOperatorControlMsg() : bool

127

Receive control messages from the OperatorConsole.

HmsSonarController::ProcessOperatorCommand() : bool
Process operator commands.

HmsSonarController:: SetSystemMode(int Mode) : bool
Configure the system for the selected mode.
post: SystemMode = Mode

HmsSonarController::RecelveProcessedData() : bool
Receive data from the DSP

HmsSonarController::SendDisplayReadyData() : bool
Send data to operator console for display.

HmsSonarController::SendTransmitterControlMsg() : bool
Send control messages to the transmitter

HmsSonarController::ReceiveT ransmitterControlMsg() : bool
Receive control messages from the transmitter.

HmsSonarController::SendTransducer ControlMsg() : bool
Send control messages to transducer.

HmsSonarController::ReceiveTransducerControlMsg() : bool
Receive control messages from the transducer.

HmsSonarController::UpdateTrackDatabase() : bool
Update the track database to account for newly processed data.

HmsTransducerController::Initiaize() : bool
Initialize the transducer.
post: HmsTransducerController.RxMode = RXMODE_PASSIVE

HmsTransducerController::SetConfiguration(enum Configuration) : bool
(Re-)Configure the transducer.
post: HmsTransducerController.RxMode = Configuration

HmsTransducerController::Listen() : void
Acquire acoustic signals from the marine environment.

HmsTransducerController::SendRawAcousticData() : bool
Send data from transducer to DSP.

128

129

