
Feature-based Object Or iented Modelling (FOOM):
Implementation of a Process to Extract and Extend

Software Product L ine Architectures

by Patrick J. Tierney, B. Sc. Eng., P. Eng.

A Thesis Submitted to
the Faculty of Graduate Studies and Research

in partial fulfilment of
the requirements for the degree of

Master of Science
Information and Systems Science

Faculty of Engineering
Department of Systems and Computer Engineering

Carleton University
Ottawa, Ontario, Canada, K1S 5B6

August 2002
©2002, Patrick J. Tierney

i

The undersigned recommend to the Faculty of Graduate
Studies and Research acceptance of the thesis

Feature-based Object-Oriented Modelling (FOOM):
Implementation of a Process to Extract and Extend

Software Product L ine Architectures

submitted by
Patrick J. Tierney, B. Sc. Eng., P. Eng.

in partial fulfilment of the requirements for
the degree of

Master of Science
Information and Systems Science

Thesis Supervisor

Chair, Department of Systems
and Computer Engineering

Carleton University
August 2002

ii

ABSTRACT

Using a product line approach to software development and evolution requires much more

than a reuse program: it requires the implementation of a common architecture across all

members of the product family. FOOM represents a synthesis of the FODA (Feature

Oriented Domain Analysis) , the Horseshoe model, the Unified software Development

Process and the Unified Modelling Language (UML). It focuses on: identifying

user-driven features throughout a product line's architecture, organizing the architectural

assets to lend themselves to substantial reuse, and, instantiating multiple products from a

single architecture.

iii

DEDICATION

This work is dedicated to the memory of my son, Mark Daniel (1981-1983), whose brief

time with us was filled with wonder and excitement as he discovered the world around

him. His legacy has inspired me to look at each morning as a new beginning, to live each

day to the fullest, to learn from all of life's experiences and to be at peace with the world

as each day closes.

ACKNOWLEDGEMENTS

To my wife, and life partner for nearly 30 years, Cassie Kelly, whose constant and

enduring love, support, and encouragement have helped me through many of life's

challenges. Thank you. I love you.

To my daughter Sandra and my son David. Thank you for your understanding and

patience during those many times when deadlines were looming.

To Samuel Ajila, for helping me complete this work. It has been a pleasure working with

you.

To Lionel Briand, for introducing me to the finer points of software engineering and the

study of software product lines.

iv

To the faculty and staff of Systems and Computer Engineering, particularly Trevor Pearce,

my academic advisor, Dorina Petriu, Murray Woodside, Daniel Amyot (University of

Ottawa) and Tony Bailletti, my defense committe, and, Darlene Hebert and Judy Bowman.

To Computing Devices Canada, especially George Georgaras, Cindy Tutt, Simon Hebert,

and John Moolenbeek, where I learned the best practices of Software Engineering.

To the men and women behind the National Research Council of Canada's O-Vitesse

program, particularly Arvind Chhatbar and Hélène Biddiscombe for the opportunity to

embark on my new career in Software Engineering.

v

Table of Contents

101.3 Thesis Statement .

101.2 Motivation .

91.2.1 What is a Feature? .

91.2 Feature-based Modelling .

81.1.3.1 The Horseshoe Model .

71.1.3 Reengineering .

61.1.2.3 Architecture and Software Product Lines

41.1.2.2 Architectural Views .

31.1.2.1 Architecture Terminology .

31.1.2 Software Architecture .

21.1.1 Domain Engineering .

21.1 A Definition of Software Product Line Engineering

1Chapter 1 Introduction .

xiiList of Figures .

xiList of Tables .

viTable of Contents .

ivACKNOWLEDGEMENTS .

ivDEDICATION .

iiiABSTRACT .

vi

394.2 Problem Definition .

394.1.3 Comments on KobrA .

384.1.2 Comments on FAST .

374.1.1 Comments on FODA .

374.1 Perspectives .

36Chapter 4 - Problem Definition .

333.3 KobrA .

323.2.3 Application Engineering and FAST .

313.2.2 Commonality and Variability Analysis in FAST

293.2.1 Domain Engineering and FAST .

293.2 FAST - Family-oriented Abstraction, Specification, and Translation

263.1 FODA - Feature-Oriented Domain Analysis .

25Chapter 3 - Current Practice of Software Product L ine Engineering

202.3 Design with the USP .

162.2 Analysis with the USP .

142.1 Requirements Definition .

13

Chapter 2 Software Architecture with the Unified Software Process and

the UML .

111.4 Thesis Overview .

vii

716.3 Adapting the Base Product Architecture .

706.2 Applying FOOM to Sonar Systems .

676.1 What is Sonar .

66Chapter 6 Model Application .

645.4 Summary .

625.3.1 Traceability and Stereotyping .

625.3 Sum of the Parts .

615.2.2.4 Product Architecture Development

605.2.2.3 Product Line Architecture Development

595.2.2.2 Domain Architecture Development

595.2.2.1 Base Product Architecture Recovery

595.2.2 Steps in the Architecture Transformation Process

575.2.1 Modelling Strategies .

545.2 Architecture Transformation and Evolution .

505.1.6 Integrating the Feature Model .

495.1.5 Feature Discovery and Propagation .

465.1.4 Adding Precision to the Feature Model .

455.1.3 An Object-Oriented Perspective of the Feature Model

445.1.2 Building a Feature Model Based on FODA .

435.1 Expanding Feature-based Modelling .

42Chapter 5 - FOOM - Feature-based Object Oriented Modelling

viii

1037.3.3 Non-functional Requirements .

1037.3.2 Architecture Validation .

1027.3.1 Tools for FOOM .

1027.3 Conference Feedback .

1017.2 Limitations of FOOM .

1017.1.4 Adoption of the USP and UML .

1007.1.3 Application Generation .

997.1.2 Architecture-centric System and Product Line Development

987.1.1 Feature-based Development .

987.1 Evaluation of FOOM .

97Chapter 7 Conclusion .

956.8 Summary .

946.7.4 Software Deployment .

936.7.3 The Command and Control (CCS) Interface .

906.7.2 Digital Signal Processor Subsystem .

906.7.1 Operator Console Subsystem .

896.7 Building the Product Line Design Model .

886.6 Product Contracts .

806.5 Developing the Product Family Feature Model .

756.4.1 Understanding the Products in the Domain .

756.4 Developing the Domain Feature Model .

ix

115Appendix C Hull Mounted Sonar Data Dictionary .

111Appendix B Hull Mounted Sonar System Specification .

110Appendix A Acronyms .

105Bibliography .

1057.5 Future Work .

1047.4 Contribution .

1037.3.4 Effectiveness of FOOM .

x

List of Tables

81Sonar product line features6-4 .

76Summary of Product Functions for various types of sonar6-3

76Summary of features for the various sonar types6-2

72Primary hull-mounted sonar use cases6-1 .

62

Examples of stereotype label components to provide traceability in

software product family architecture development.

5-5

.

61Product architecture development workflow5-4 .

60Product line architecture development workflow5-3

59Domain architecture development workflow5-2 .

59Base product architecture recovery workflow5-1 .

40Summary of current software product line practices4-1

32Artifacts generated during the FAST Commonality Analysis3-1

15Example template for documenting a template2-1 .

PageDescriptionTable

xi

List of Figures

44A feature encapsulates structural and dynamic aspects of a product5-1 . . .

34

Artifacts used for the specification and implementation of a KobrA

component

3-3

. .

31The FAST process pattern3-2 .

29Use of Domain Analysis Products in Software Development3-1

24Modelling elements used to describe a software architecture2-10

23Design model deployment diagram2-9 .

22Subsystem decomposition class diagram2-8 .

21Artifacts comprising the design model in the USP2-7

20Artifacts comprising the analysis model in the USP2-6

19UML notation for functional aspect of analysis model2-5

18UML notation for structural aspect of the analysis model2-4

16Relationships between the different analysis objects2-3

15Relationship of the use case model to the USP2-2 .

14UML notations used for requirements analysis.2-1 .

8The SEI horseshoe model for reengineering1-3 .

5The four views of software architecture1-2 .

3The SEI domain engineering process1-1 .

PageDescriptionFigure

xii

63

The same artifacts are used to describe the architecture at each step

in the transformation process

5-13

. .

58Modelling strategies used in FOOM5-12 .

56

Use case model of the logical transformation from a base product

to a product line architecture

5-11

. .

55

Relationships of the different stages of the architecture

transformations

5-10

. .

55Horseshoe model modified for software product line development.5-9

53

Multidimensional relationships between the analysis, feature and

design models in FOOM.

5-8

. .

52

Relationship between the Feature Model and the Analysis and

Design Models

5-7

. .

51The feature model bridges the analysis and design models5-6

50

Correlation of the features and functions to the USP Analysis

Model

5-5

. .

48Relationship between product line and product feature contracts5-4

47

Using a contract to simplify the relationship between the Products

and Features in the Feature Model.

5-3

. .

46

Building the feature model with basic aggregation and multiplicity

techniques

5-2

. .

PageDescriptionFigure

xiii

94Sonar product-line deployment diagram6-14 .

93

Command and Control Interface subsystem from the product line

architecture

6-13

. .

92

Digital Signal Processor subsystem class diagram from the product

line architecture

6-12

. .

91

The Operator Console subsystem as defined in the product line

design model

6-11

. .

87Sonar family Passive Detection feature6-10 .

86Sonar family Active Detection feature6-9 .

84Product line use diagram6-8 .

83Sonar product line feature model.6-7 .

79Sonar domain use case diagram6-6 .

75Sonar domain feature model6-5 .

74Base product feature model6-4 .

73Base product use case diagram6-3 .

69Types of sonar6-2 .

67Sonar system overview6-1 .

64

FOOM uses the same methodologies and artifacts to model

architectures at each step in the transformation process.

5-14

.

PageDescriptionFigure

xiv

Chapter 1

Introduction

A software product line is a set of related products developed by an organization. These

products share a common managed set of behaviors and attributes. Organizations are

finding that a product line practice yields substantial measurable improvements in

productivity and quality. First hand experience confirms that system development with an

eye to sibling products substantially reduces the effort required for the design and

implementation.

Typically, product-line development is characterized by processes and practices for

developing an individual system and then creating variations of it. These variations on

individual systems take continual investment in understanding new requirements, and in

redesign, recoding and retesting. The result can be less than optimal designs, in terms of

performance, quality and further evolution.

This work proposes a set of methodologies to design and build software families where

members have a common architecture. The processes are based on providing value to the

user. Documentation of the architectures uses industry standard notations and established

software development practices.

1

1.1 A Definition of Software Product L ine Engineer ing

Software product line engineering is a superset of three constituent disciplines: domain

engineering, software architecture and reengineering. Each are required to adequately

understand and build a product family.

1.1.1 Domain Engineer ing

Domain engineering is the systematic creation of domain-specific architectures and their

use in building applications. The emphasis is on reuse: reusable components must be

designed to be easily tailorable. For large systems, reuse of large, pre-integrated chunks is

key [3].

Domain engineering requires a deep and thorough understanding of the commonalties and

variations inherent in the undertaking. A process for domain engineering can be

characterized by the following steps (Figure 1-1):

� Domain analysis is the process of identifying, collecting, organizing and representing

the relevant information in a domain, based upon the study of existing systems,

knowledge captured from domain experts, underlying theory, and emerging

technology within a domain.

� Domain design is the process of developing a model from the products of domain

analysis - requirements specifications, tables, models - and the knowledge gained from

the study of software requirement/design reuse and generic architectures.

2

� Domain implementation is the process of identifying reusable components based on

the domain model and generic architecture

1.1.2 Software Architecture

The architecture of a software system is the structure of the system comprising software

components, externally visible properties of those components, and the relationships

among them [24]. In an engineering context, it is also the set of requirements, plans and

specifications that descibe the system in manner that designers can carry out the

implementation of the system. In essence, it bridges requirements and code.

1.1.2.1 Architecture Terminology

Software architecture terminology varies depending on the level of abstraction and the

intent of the particular design. Each type of architecture defines: element types and how

they interact, mapping of functionality to architecture elements, and instances of

3

Existing
domain
knowledge

Information
modelling
techniques

Domain
Analysis

• Bounding

• Commonalities
 and differences
• Understanding
• Representing

Domain
model

Software /
system
architecture

Domain
Design

• Generic designs
• Coordination
 models
• Partitioning
 strategies
• Design specs

Design
model

Domain
Implementation

• Identify
 reusable
 assets

• Develop
 asset library

Reusable
assets

Figure 1-1 The SEI domain engineering process[3]

architecture elements [9]. Following are architecture types used in this study:

� Architectural pattern defines generic element types and how they interact (i.e.

client/server, peer-to-peer, single system).

� Domain architectures define element types and allowed interactions, but for a

particular domain. These types define how the domain functionality is mapped to the

architecture elements

� Product line / product family architectures apply to a set of products within an

organization or company. They define element types, how they interact and how the

product functionality is mapped to them. These architectures may also include

mechanisms for identifying the commonalties and variabilities between individual

products in the family.

� Software system / software product architecture applies to one system and describes

the element types, how they interact, how functionality is mapped to them, and the

instances of each element that exist in the system.

1.1.2.2 Architectural Views

The search for commonalties in various software architecture types has led to the

evolution of four distinct views: conceptual, module, execution and code. Each view

describes a different kind of structure. Between the views the structures are loosely

coupled and address different engineering concerns. Figure 1-2 illustrates the intent of

each view and the relationships between the different views.

� Code view - the organization of the source code, object code, libraries, binaries, which

4

are then organized into versions, files and directories. The effectiveness of this

organization can affect factors such as reusability of the code, build time for the

system, etc.

� Module view - the decomposition of the system into major components, identification

of interfaces and the partitioning of modules into layers.

� Execution view - allocation of functional components to runtime entities, handling of

the communication, co-ordination and synchronization among those entities and

mapping them to hardware.

� Conceptual view - description of the system in terms of its major design elements and

the relationships among them.

5

Conceptual View

Feed forward

Feed back

Module View

Code View

Execution
View

Source Code

H
ar

dw
ar

e
A

rc
hi

te
ct

ur
e

Components,
Connectors,
Configuration

Module constraints

Modules,
Subsystems,
Layers

New module
partitioning

Components,
Connectors,
Configuration

Runtime
constraints

New module
partitioning

Modules

Runtime
Entities

Changes to
Runtime
Entities

SOFTWARE ARCHITECTURE

Figure 1-2 The four views of software architecture [9]

1.1.2.3 Architecture and Software Product L ines

A key challenge to taking a product line approach is that different methods of

development are required. In a single-product approach, the architecture is evaluated with

respect to the requirements of that product alone. Single products can be built

independently, each with a different architecture. However, in a product line approach,

the designer must also consider requirements for the family of systems and the relationship

between those requirements and the ones associated with each particular instance.

In the context of product lines, a software architecture focuses on the representation,

definition, and evaluation of software architectures and their use in engineering

software-intensive systems in a particular domain. A robust software architecture

applicable across the product line is critical.

Software architecture forms the backbone for building successful software-intensive

systems. A system's quality attributes are largely permitted or precluded by its

architecture. Architecture represents an abstract reusable model that can be transferred

from one system to the next. Architecture represents a common vehicle for

communication among a system's stakeholders, and is the arena in which conflicting goals

and requirements are mediated .

Software architecture represents one of the key reusable assets that form the basis of a

software product line. Different products in the product line usually share the same

6

architecture or are built using prescribed variations of a common architecture [5].

1.1.3 Reengineer ing

Reengineering focuses on leveraging existing software assets[6] and the evolution of

legacy systems, especially as a baseline for product lines[2]. Few systems start out as a

"green field" development effort. A realistic approach for either migrating to a modern

software architecture or developing a product line begins with analyzing legacy systems to

understand the current architecture and developing a strategy for mining and reusing

existing assets [6].

1.1.3.1 The Horseshoe Re-engineer ing Model

SEI's Horseshoe Model (Figure 1-3), as described in [19], presents a code-based approach

for extracting a system's architecture. It is paradigm-agnostic, leaving its implementation

to be defined on a system by system basis. This model identifies three basic reengineering

processes:

� Architecture Recovery / Conformance - analysis of an existing system to recover a

system's current architecture by extracting artifacts from source code. This recovered

architecture is analyzed to determine whether it conforms to the "as-designed"

architecture. The discovered architecture is also evaluated with respect to a number of

quality attributes such as performance, modifiability, security or reliability.

� Architecture Transformation - The "as-built" architecture recovered in the previous

step is re-engineered to become a desirable new architecture. It is re-evaluated against

7

the system's quality goals.

� Architecture-based development - instantiates the desired architecture. In this process,

packaging issues are decided and interconnection strategies are chosen. Code-level

artifacts from the legacy system are often wrapped or rewritten in order to fit into this

new architecture.

The horseshoe model provides a road map for extracting an architecture from an existing

system, transforming the architecture, say from functional decomposition to

object-oriented, and then providing rules for instantiating the new architecture.

8

Architecture
Recovery /

Conformance

Architecture Transformation

Base
Architecture

Desired
Architecture

Architecture
Representation

Function-level
Representation

Code Structure
Representation

Source Text
Representation

Design
Patterns & Styles

Program
Plans

Code styles

Legacy
Source

New System
Source

Architecture-based
Development

Architecture
Representation

Function-level
Representation

Code Structure
Representation

Source Text
Representation

Figure 1-3 The SEI horseshoe model for reengineering[19]

1.2 Feature-based Modelling

Current software architecture modelling technologies place a strong emphasis on

capturing the user's requirements, but bury them inside constructs such as use cases[8]. A

mechanism is needed for drawing more of the software developer's focus towards the final

objective of any development project, the expectations and perceptions of the user.

1.2.1 What is a Feature?

In its simplest form a feature is an aspect of a software system, such as a behavior or an

attribute, as perceived by the user. It represents a view of the system that is quite distinct

from that of the software architect, hiding the details of the software from the user.

Features can be used to group many requirements and their ensuing design artifacts into a

single entity [26].

It is easy to think of a feature as an autonomous, atomic elements of a software system

[26]. However, experience shows that, in any nontrivial system, this is not the case.

Looking at a system from the feature level provides a macroscopic view of its static and

dynamic structure as perceived by the user.

From a product line perspective, a feature can be considered to be an architectural pattern

taken from several instances of a product family's siblings.

9

1.3 Motivation

User requirements can be captured in a very simple concept - features. These are the

attributes and behaviors of a product, software or otherwise, that provide value. Modern

software development processes place a strong emphasis on capturing the user's

requirements, but bury them inside constructs such as use cases. A mechanism is needed

for drawing more of the software developer's focus towards the final objective of any

development project, the expectations and perceptions of the user.

1.4 Thesis Statement

The major contributions of this work are:

1. Feature model artifacts and mechanisms for its development and evolution are added

to the Unified Software Development Process (USP).

2. FODA (Feature Oriented Domain Analysis) is extended beyond domain engineering to

product line engineering by incorporating the extended USP (in 1 above) into its

definition.

3. The horseshoe re-engineering model is extended to model multiple transformations,

from a base product to domain, product-line and product architectures

4. The feature contract, which defines the rules for instantiating a product from the

product line architecture, is introduced.

5. The resulting model - FOOM (Feature-based Object Oriented Modeling) is applied in a

systematic way to a family of sonar systems.

10

1.5 Thesis Overview

In this first chapter, the subject of software product line engineering has been introduced

and the reasons for embarking on this research project have been presented.

Chapter 2 provides a cursory review of the Unified Software Development Process and

the UML.

Chapter 3 describes the state of the art in software product line engineering.

Chapter 4 identifies and discusses the strengths and weaknesses of the methodologies

presented in Chapter 3. This discussion leads to the formulation of the problem addressed

by this thesis.

Chapter 5 presents the details of the proposed model. It identifies the extensions to

existing practices and introduces new processes that address the problem of modelling

software product line architectures.

In Chapter 6 the new model is applied to an example application – a family of sonar

systems. The concepts of sonar are introduced followed by a description of current and

future members of the product family. From there, the new model applied systematically

to the example.

11

Chapter 7 evaluates Feature Oriented Object Modelling (FOOM) against the

methodologies in Chapter 3, recounts the contribution to research of this thesis and closes

with the future direction to the work.

12

Chapter 2

Software Architecture with the Unified

Software Process and the UML

Underpinning FOOM is the Unified Software-Development Process (USP) as described by

[8][11]. It is used to describe FOOM itself, and as a template for developing and

describing each of the architectures in the transformation from a base-product architecture

to a product line architecture. An integral part of this standardization is the adoption of

the Unified Modelling Language (UML) as the notation for the various assets developed

in the process. The different phases are reviewed herein to provide a context for the

model, but familiarity with the processes in [8][11] is required for a full understanding of

how the USP is applied in the model.

13

2.1 Requirements Definition

The purpose of requirements definition is to identify a problem area and build a system

specification that addresses the problem [11]. The end result of this work is a system

specification: a natural language artifact. However, we do use the UML Use Case Model

to assist us in understanding the activities the system will perform and the stakeholders,

human and non-human, involved in the system (Figure 2-1). [11] suggests the following

activities for requirements definition:

� Identifying actors - the different types of users the system will support

� Identify scenarios - concrete sets of interactions between one or more actors in the

system.

� Identify use cases - generalized sequences of interactions between one or more actors

and the system. This is captured in the Use Case Diagram (Figure 2-2) and

documented in natural language. Table 2-1 is a suggested template.

� Refine use cases - elaborate use cases to include errors and exceptional conditions.

The <<extends>> relationship is used for this.

� Consolidate relationships among use cases - eliminate redundancies. The

<<includes>> relationship helps to simply the number of use cases.

14

Figure 2-1 Relationship of the use case model to the USP

Use Case Diagram

Use Ca se M od el

Software Architecture
1

1
1

1

Requirements

1

*

1

*

Table 2-1 Example template for documenting a scenario - ATM withdrawal [11]

Customer has account with bankSpecial requirements
Customer has cash, account balance reducedPostcondition(s)

1. Customer inserts ATM card
2. Display message - request password
3. Customer enters password
4. Verify password
5. Request transaction type
6. Customers responds - WITHDRAWAL / AMOUNT
7. Verify transaction / adjust account balance
8. Dispense cash
9. Return card

Flow of events
Customer has no overdraftPrecondition(s)
Customer, Keypad, Display, CashDispenser, ServerParticipating actors
AutomatedTellerWithdrawalUse case name

15

System

Use Case B

Use C ase A

<<inc ludes>>

Use Cas e C

<<extends>>

Actor 1

Actor 2

Actor 3

U se Case

Figure 2-2 UML notations used for requirements analysis.

2.2 Analysis with the USP

The next step in the USP is analysis. Here we gain an understanding of the nature of the

system by specifying behaviors and interactions, identify attributes such as quality and

performance, and beginning to build a structure for the final product. The steps in the

process are:

� Define participating analysis objects - Examines each use case and identifies

candidate objects. The participating objects can be further broken down into entity,

boundary, algorithm and control objects (Figure 2-3).

� Entity objects represent persistent or long lived information traced by the system.

� Boundary objects represent interactions between the user and the system.

� Algorithm objects represent a task performed by the system.

� Control objects aggregate algorithm, entity and boundary objects.

Use these objects as the kernel for building the Analysis Class Diagram (Figure 2-4).

16

Figure 2-3 Relationships between the different analysis objects

System Controller
<<control>>

D ata
<<entity>>

Acquisition
<<bo unda ry>>

control

acquire

Processing
<<algo rithm>>

control

proce ss

d ata
Presentation

<<bo unda ry>>

control

present

+receive+send

data

+receive+send

� Map use cases to objects and define interactions - sequence diagrams tie use cases

with objects. See Figure 2-4.

� Model nontrivial behavior of objects - in addition to sequence diagrams, which

represent behavior from the perspective of the user, statecharts are used to represent

the behavior of the system from the perspective of individual objects. Statecharts are

constructed only for objects with an extended life span and nontrivial behavior. See

Figure 2-5.

� Define attributes - named properties of a class defining a range of values an object can

contain.

� Define associations - a relationship between two or more classes denoting possible

links between instances of the classes; they have names and can have multiplicity and

roles attached at each end.

� Consolidate the model - solidify the model by introducing qualifiers, generalization

relationships and suppressing redundancies.

� Review model - the model is examined for correctness, consistency, completeness and

realism.

Figure 2-6 illustrates the structure of the USP's analysis model.

17

18

C ont rol

<<analy s is objec t>>
Boundary

<<analy s is objec t>>

C ont ro l

<<analy s is objec t>>

Entity
<<analy s is objec t>>

Actor

b)

D ataTy pe

<<entity >>

D ataTy peX

<<entity >>
DataTy peY

<<entity >>

Actor2

<<control>>

Us eC aseB

<<c ontr ol >>

Us eC aseC

<<control>>

Actor3

<<boundary >>

DataTy peZ

<<ent ity >>

Us eCas eA

<<c ontrol>>

a)

U se C ase

ident ify

Algorithm

<<analy s is objec t>>identify

identify

ident ify

identify

Figure 2-4 UML notation for structural aspect of the analysis model: a) transform use
case diagram artifacts to analysis objects b) Analysis Object Class diagram

19

 : Actor

 : Boundary : UseCaseA : DataTypeX : Control1 : Boundary2

stimulate

create()
create()

process()

update()

display()

read()

present visuals()

start state

Ready

initialize Processing

data received

processing complete

Error

processing error

Error recovery

error type identified

recovery successful

recovery failed

a)

b)

Figure 2-5 UML notation for functional aspect of analysis model: a) Sequence Diagram
b) Statechart

2.3 Design with the USP

Once we are satisfied the Analysis Model adequately defines the behavior and basic

structure of our system, we are ready to begin development of the Design Model, whose

overall structure is illustrated in Figure 2-7. The basic steps in this process are:

� Identify design goals - non-functional requirements such as reliability, fault tolerance,

security and extensibility.

� Design an initial subsystem decomposition - break the system down into simpler parts,

each providing services to other subsystems. Document this work with the Subsystem

Class Diagram (Figure 2-8).

20

Dictionary

S oftware A rchite cture

1

1

1

1

Se que nce Dia gram

Analysis C lass D iagram

Analysis Model

1

1

1

1

1

1..*

1

1..*

1

1

1

1

Analysis Object

1..*

1..*

1..*

1..*

1..*

1

1..*

1

Statechart

Figure 2-6 Artifacts comprising the analysis model in the USP.

� Map subsystems to hardware and software platforms - examine the allocation of

subsystems to computers and the design of the infrastructure for supporting

communication between subsystems and document with a Deployment Diagram

(Figure 2-9).

� Manage persistent storage - identify the objects that need to be persistent and

determine the most effective way of storing them

� Define access control policies - define for each actor in the system which operations

they can access on each shared object

� Select a control flow mechanism - determine which actions - as previously defined in

use cases) need to be executed for a given stimulus and the order in which they should

occur.

� Describe boundary conditions - decide how the system is started, initialized and shut

down.

Figure 2-10 illustrates the relationship between analysis and system design. It is an

iterative-incremental process generating a number of refinements as the notion of how the

system needs to be built becomes clearer.

21

Deployment Diagram

Subsystem Class diagram

S ubsystem Decomposition

1

1

1

1

1

1..*

1

1..*

Seque nce D ia gram

Design Ob jects

1..*

1..*

1..*

1..*

1..*

1 ..*

1..*

1 ..*

S oftware A rchitecture

D ictionary

1

1

1

1

De sign M odel

1

1..*

1

1..*

1

1..*

1

1..*

1

0..1

1

0..1

Figure 2-7 Artifacts comprising the design model in the USP.

22

C
om

m
un

ic
at

io
ns

<
<

su
bs

ys
te

m
>

>

D
at

a
A

cq
ui

si
tio

n
<

<
su

bs
ys

te
m

>
>

U
se

r
In

te
rf

ac
e

<
<

su
bs

ys
te

m
>

>

C
lie

nt
<

<
co

nt
ro

l>
>

S
er

ve
r

<
<

co
nt

ro
l>

>

C
om

m
un

ic
at

io
nP

ro
xy

<
<

bo
un

da
ry

>
>

C
om

m
un

ic
at

io
nN

od
e

<
<

co
nt

ro
l>

>

P
ro

ce
ss

1C
on

tr
ol

<
<

al
go

rit
hm

>
>

P
ro

ce
ss

2C
on

tr
ol

<
<

al
go

rit
hm

>
>

S
ys

te
m

C
on

tr
ol

le
r

<
<

co
nt

ro
l>

>

R
aw

D
at

a
<

<
en

tit
y>

>
P

ro
ce

ss
ed

D
at

a
<

<
en

tit
y>

>
D

is
pl

ay
R

ea
dy

D
at

a
<

<
en

tit
y>

>

D
at

aS
up

er
C

la
ss

<
<

en
tit

y>
>

D
at

aA
cq

ui
si

tio
nC

on
tr

ol
le

r
<

<
co

nt
ro

l>
>

R
aw

D
at

a
<

<
en

tit
y>

>

R
aw

D
at

a
<

<
en

tit
y>

>

P
ro

ce
ss

in
gM

od
ul

e
<

<
al

go
rit

hm
>

>

P
ro

ce
ss

in
gN

od
eC

on
tr

ol
le

r
<

<
co

nt
ro

l>
>

U
se

rI
nt

er
fa

ce
C

on
tr

ol
le

r
<

<
co

nt
ro

l>
>

O
pe

ra
to

rI
np

ut
D

ev
ic

e
<

<
bo

un
da

ry
>

>

O
pe

ra
to

rI
np

ut
P

ro
ce

ss
or

<
<

al
go

rit
hm

>
>

D
is

pl
ay

<
<

bo
un

da
ry

>
>

P
re

se
nt

V
is

ua
ls

<
<

al
go

rit
hm

>
>

D
is

pl
ay

R
ea

dy
D

at
a

<
<

en
tit

y>
>

C
om

m
un

ic
at

io
nP

ro
xy

<
<

bo
un

da
ry

>
>

S
ys

te
m

 C
on

tr
ol

<
<

su
bs

ys
te

m
>

>

C
om

m
un

ic
at

io
nP

ro
xy

<
<

bo
un

da
ry

>
>

tr
an

sp
or

t

C
om

m
un

ic
at

io
nP

ro
xy

<
<

bo
un

da
ry

>
>

P
ro

ce
ss

in
g

<
<

su
bs

ys
te

m
>

>

C
om

m
un

ic
at

io
nP

ro
xy

<
<

bo
un

da
ry

>
>

P
ro

ce
ss

ed
D

at
a

<
<

en
tit

y>
>

tr
an

sp
or

t

pr
oc

es
s

po
pu

la
te

Figure 2-8 Subsystem decomposition class diagram

23

P
ro

ce
ss

in
g

N
od

e P
ro

ce
ss

in
g

N
od

e
C

om
m

'n
 P

ro
xy

P
ro

ce
ss

in
g

S
ub

sy
st

em

O
pe

ra
to

r
C

on
so

le

O
pe

ra
to

r
N

od
e

C
om

m
'n

 P
ro

xy

D
is

pl
ay

 S
ub

sy
st

em

O
pe

ra
to

r
In

pu
t S

ub
sy

st
em

D
at

a
A

cq
ui

si
tio

n
N

od
e

D
at

a
A

cq
ui

si
tio

n
S

ub
sy

st
em

D
at

a
A

cq
ui

si
tio

n
C

om
m

'n
 P

ro
xy

C
om

m
un

ic
at

io
n

 S
ys

te
m

C
om

m
un

ic
at

io
n

M
id

dl
ew

ar
e

S
ys

te
m

 C
on

tr
ol

 N
od

e

S
ys

te
m

 C
on

tr
ol

 C
om

m
'n

 P
ro

xy

S
ys

te
m

 C
on

tr
ol

Figure 2-9 Design model deployment diagram

24

De
pl

oy
m

en
t D

ia
gr

am

Su
bs

ys
te

m
 C

la
ss

 d
ia

gr
am

An
al

ys
is

O
bj

ec
t

Su
bs

ys
te

m
 D

ec
om

po
sit

io
n

1 11 11

1.
.*

1

1.
.*

Se
qu

en
ce

 D
ia

gr
am

De
sig

n
O

bj
ec

ts1.
.*

1.
.*1.

.*

1.
.*

1.
.*

1.
.*

1.
.*

1.
.*

Se
qu

en
ce

 D
ia

gr
am

1.
.*

1.
.* 1.
.*

1.
.*

St
at

ec
ha

rt

An
al

ys
is

Cl
as

s
Di

ag
ra

m

1.
.*

1

1.
.*

1

Us
e

Ca
se

 D
ia

gr
am

De
sig

n
M

od
el

1

1.
.*

1

1.
.*

1

1.
.*

1

1.
.*

An
al

ys
is

M
od

el

1

1.
.*

1

1.
.*

1

1

1

1

de
fin

es

Us
e

Ca
se

 M
od

elDi
ct

io
na

ry

So
ftw

ar
e

Ar
ch

ite
ct

ur
e

11

1

0.
.1

1

0.
.1

1

1

1

1

1
1

1
1

1

1

1

1

Re
qu

ire
m

en
ts

1

*

1

*

Figure 2-10 Modelling elements used to describe a software architecture

Chapter 3

Current Practice of Software

Product L ine Engineer ing

Most new methods are built upon existing processes and models. In this chapter, current

software product line engineering practices are examined. The goal is to expose

weaknesses from which the basis for a new process can be identified, and, to highlight

strengths that can be carried forward into the new methodology.

25

3.1 FODA - Feature-Or iented Domain Analysis

The Feature-Oriented Domain Analysis (FODA) methodology [14] resulted from an

in-depth study by the Carnegie Mellon Software Engineering Institute (SEI) of other

domain analysis approaches. FODA focuses on the concept of a feature - an aspect of a

system as perceived from the user's point of view. Successful applications of various

methodologies pointed towards approaches that focused on the processes and products of

domain analysis. FODA processes are:

� establishing methods for performing a domain analysis

� describing the products of the domain analysis process

� establishing the means to use these products for application development

The FODA methodology was founded on a set of modelling concepts and primitives used

to develop domain products that are generic and widely applicable within a domain. The

basic modelling concepts are [14]:

� Abstraction - used to develop a domain architecture from the specific applications in

the domain. This architecture abstracts the functionality and designs of the applications

in a domain, generalizing "factors" that make one application different from other

related applications. The FODA method advocates that applications in the domain

should be abstracted to the level where no differences exist between them. This is

done to expose the underlying common architecture, or, if one doesn't exist, to

facilitate its development.

� Refinement - used to both refine the domain architecture back into applications.

26

Specific applications in a domain are represented as refinements of the domain

architecture by using the general abstraction as a baseline and selecting among

alternatives and options to develop the application (i.e., those factors that have been

abstracted away must be made specific and reintroduced).

Application abstraction / refinement is accomplished by using the modelling primitives of:

aggregation/decomposition, generalization/specialization and parameterization. The

FODA method applies the aggregation and generalization primitives to capture the

commonalties of the applications in the domain in terms of abstractions. Differences

between applications are captured in refinements.

An abstraction can usually be refined (i.e., decomposed or specialized) in many different

ways depending on the context in which the refinements are made. Parameters are defined

to uniquely specify the context for each specific refinement. The result of this approach is

a domain product consisting of a collection of abstractions and a series of refinements of

each abstraction with parameterization. Understanding what differentiates applications in

a domain is most critical since it is the basis for abstractions, refinements, and

parameterization.

The feature-oriented concept of FODA is based on the emphasis placed by the method on

identifying prominent or distinctive user-visible features within a class of related software

systems. These features lead to the conceptualization of the set of products that define the

27

domain.

The domain analysis process consists of a number of activities, producing many types of

models (Figure 3-1). These models are used to develop applications in the domain:

� The context model is used by a requirements analyst to determine if the application

required by the user is within the domain for which a set of domain products is

available.

� The feature model identifies mandatory, alternative, and optional features. The feature

model is a better communication medium since it provides this external view that the

user can understand.

� The entity-relationship model can be used by a requirements analyst to acquire

knowledge about the entities in the domain and their interrelationships. An

understanding of the domain will help the analyst to deal with the user’s problems.

� The analysis can determine if the functional model, consisting of the data-flow model

and the finite state machine model of the domain products, can be applied to the user’s

problems to define the requirements of the application. If the user’s problems are all

reflected in the feature model, then the requirements may be easily derived from the

models. Otherwise, new refinements of the abstract components may have to be

made.

� The architecture model is used by the designer as a high-level design for the

application. If the user’s problems are reflected in the feature model, a design may be

easily derived from the architecture model. If the problems are not represented, then

28

the architecture model should be further refined from the other domain products

3.2 FAST - Family-or iented Abstraction, Specification, and

Translation

FAST was developed at Bell Laboratories (Lucent) in an attempt to balance the

requirements for rapid production of software and the ever-present need for careful

engineering. In essence, it is a pattern for software production based on three sub

processes:

� Qualifying the domain - families which are deemed important enough to the business

to warrant further investment are identified;

� Engineering the domain - infrastructure for the purpose of generating product family

members is developed;

� Engineering applications - using product generation infrastructure to produce family

29

Figure 3-1 Use of Domain Analysis Products in Software Development [14]

members rapidly.

Figure 3-2 illustrates the relationship between these three sub processes.

3.2.1 Domain Engineer ing and FAST

The purpose of domain engineering in the context of FAST is to make it possible to

generate members of a family. To accomplish this, domain engineers must [1]:

� Define the domain (or family of products)

� Develop a language for specifying the family members (the application modelling

language)

� Develop an environment for generating family members from their specifications

� Define a process for producing family members using the environment

The artifacts produced during the FAST domain engineering process include:

� An economic model of the domain

� A definition of the family identifying standard terminology and any assumptions that

characterize the commonalties and variabilities of individual family members (see the

following section for a further understanding of commonality and variability analysis)

� A description of the decision model for the domain

� The tools, code libraries and documentation required to build and use an application

engineering environment

30

3.2.2 Commonality and Var iability Analysis in FAST

A central element of the FAST domain engineering process is the commonality analysis.

This analysis contains a list of assumptions that are true for all family members. These

assumptions form the set of requirements that hold true for all members of the product

line. Also part of this analysis is an identification of product variabilities - the aspects that

will vary from product to product in the family - and the range of values for each. Table

31

Qualify Domain

Engineer Domain

Analyze Domain

Implement Domain

Application Engineering Environment

Engineer Application

Model Application

Produce Application

Deliver & Support App'n

Iterate

Iterate

Feedback

Feedback

Applications

Figure 3-2 The FAST process pattern [1]

3-1 summarizes the artifacts generated by the commonality analysis. Refer to [1][16][17]

for a detailed discussion of the FAST Commonality Analysis process.

Table 3-1 Artifacts generated during the FAST Commonality Analysis

A record of the alternatives considered for key issues that
arose while analyzing the domain

Issues

Quantification of the variabilities, specifying the range of
values for each one

Parameters of variation

A structured list of how family members may varyVariabilities

A structured list of assumptions that are true for all members
of the family

Commonalities

A standard set of key technical terms used to describe the
product family and its members

Dictionary of terms

DescriptionArtifact

3.2.3 Application Engineer ing and FAST

The purpose of application engineering in FAST is to quickly explore the space of

requirements for an application and then to generate the application with the infrastructure

developed during domain engineering. The idealized FAST application engineering

process consists of analyzing a customer's requirements for a product line member,

engineering and generating the application, delivering the code and documentation to the

customer for validation and acceptance, and providing sustaining support. The artifacts

generated or refined during this process include: a model of the application, code for the

application and support documentation. FAST recognizes that the application engineer

32

and the customer rarely establish satisfactory requirements on the first try, thus

engineering the application becomes an iterative process that makes heavy use of the

analysis and generation tools previously developed.

A key component of the FAST application engineering environment is the application

modelling language that is used to specify family members. FAST does not specify a

particular language, but instead leaves the details to the domain engineers and system

architects.

3.3 KobrA [29][30]

The KobrA method - an object-oriented version of PuLSE[25][27][28] - revolves around

component-based software engineering: the development of work products - interfaces,

subsystems, use cases, classes, templates and test cases, etc. - that are designed to be

reusable [7]. The thinking behind KobrA is that component-based systems within a given

domain will share many similarities and will use many of the same components. The

variabilities between systems in a family will thus likely revolve around a relatively small

number of critical components. Instead of assembling every system in the family from

scratch, KobrA builds a framework which hardwires the common aspects of the family,

and allows the variable components to be plugged-in as needed.

Work products are oriented towards the description of individual components. This

means that, as far as possible, there are no global or system-wide assets. Instead they are

33

defined to carry information only related to their particular component. The intention is to

allow components to be separated from their development environment and be more

readily reused independently. Figure 3-3 illustrates these concepts. .

34

Figure 3-3 Artifacts used for the specification and implementation of a KobrA
component

KobrA has fully embraced the UML in documenting the work products created in the

development of components, eliminating the need to learn new notations and build tools to

support the processes. It also employs some aspects of the USP focusing on microscopic

rather than macroscopic development.

The KobrA method is broken down into two constituent sets of activities: framework

engineering and application engineering. The purpose of the framework engineering

activity is to create, and later maintain, a generic framework that aggregates all product

variants that make up the product family, including information about their common and

disjoint features. Application engineering activity instantiates this framework to create

individual members of the product family. The goal is to use a single framework to

instantiate multiple products / applications.

35

Chapter 4

Problem Definition

The methods in the previous sections have been proven to assist software architects in

understanding product domains, extracting and re-engineering the architecture of existing

systems, and in presenting these concepts in standardized models. Unfortunately, most of

these methodologies have either not adopted modern modelling techniques. Those that

have embraced change have chosen to ignore other developments in software engineering

such as the importance of architecture-centric development. With the rapid adoption of

object-orientation and its associated modelling languages, these tried and true processes

need to be revisited to see if some currency can be added.

36

4.1 Perspectives

Each of the approaches in Chapter 3 has demonstrated their value in supporting the

development, maintenance and evolution of many diverse product lines.

4.1.1 Comments on FODA

FODA mainly distinguishes itself by its feature analysis, whose purpose is to capture, in a

model, the end user's understanding of the capabilities of applications in the target domain.

However, many of its processes and products are from the non object-oriented (OO),

functional decomposition world, making it less straightforward to develop OO product

family architectures. With the general adoption of the modern software notations within

the software community, most of the artifacts of FODA can be instantiated with UML and

merged with the processes in [8] to extend FODA in an OO context.

With that said, there is still one aspect of FODA that does not have an equivalent in OO

modelling techniques - the feature model. Although there have been examples of a one to

one mapping of the feature types to an OO context, such as in [21], incorporating the

notion of a feature as defined previously affords the opportunity to leverage the USP to

gain an understanding of the dynamics of a feature not otherwise possible with a simple

hierarchical representation.

Languages such as the UML place a strong emphasis on capturing the user's requirements,

but bury them inside constructs such as use cases. We need a mechanism for drawing

37

more of the software developer's focus towards the final objective of any development

project, the expectations and perceptions of the user.

4.1.2 Comments on FAST

FAST is as much a pattern for processes as it is a set of processes. Although this makes it

very flexible, this also makes it prone to misinterpretation when instantiated. Modern

software development demands that processes be more of a cookbook than a somewhat

more ambiguous design pattern.

FAST also centers on the creation of a whole suite of application generation tools.

Presumably, these tools are custom-built by the development team, which means that they

must also support them. This can seriously defocus the development team from their

primary function: application development. Third-party vendor tools are always

preferable when available because they are focusing on their primary function: tool

development.

There are two aspects of FAST that would appear to have some direct applicability to

developing a generic method of describing software product lines. First, the commonality

analysis process appears to be extremely useful: it is sufficiently process-agnostic allowing

it to be ported to other methods. Second, the concept of an application modelling

language permits developers to use open standard notations, such as UML, which are

supported by third-party tools complete with code generation capabilities.

38

4.1.3 Comments on KobrA

KobrA has made significant advances in bringing the UML, and to a lesser extent, the

USP to software product line engineering. It has leveraged this de facto industry standard

notation to make its daily use more readily adoptable. It also advocates the use of many

object oriented techniques, especially frameworks. Having system and application level

behaviors encapsulated by a framework permits software engineers to adorn a prescribed

architecture with application-specific components. The intent is to promote large-scale

reuse.

Unfortunately, KobrA has chosen to significantly reduce the role of software architecture,

basically hardwiring the product line's architecture very early on in the process. But how

many times have we seen a software project run into severe difficulty due to the absence

of an architecture altogether, or the presence of one that is not sufficiently malleable. This

diminution of the role of architecture brings with it risk of increased, not decreased,

development risk. Further, the view of the product line at the architectural level is what

provides us with the best perspective of the product family evolution road map.

4.2 Problem Definition

Table 4-1 lists strengths of each of the product line methodologies examined previously

which can be used to support a new process for modelling software product lines, and,

deficiencies which any new process should address.

39

Table 4-1 Summary of current software product line practices

� Role of architecture not
adequately addressed

� Incorporates object-oriented
notations and processes

KobrA

� Designers spend a lot of
time developing tools.

� Application generation
language not defined

� Not object-oriented

� Well understood
commonality and variability
processes

FAST

� No formal definition of a
feature from a modelling
perspective.

� Does not specifically
address architecture

� No formal processes for
migrating domain analysis
to product lines

� Feature based, providing a
user perspective of the
product domain

� Well-established domain
engineering processes and
work products

FODA

DeficienciesRe-usable AspectsMethodology

In this work, a feature-based, object-oriented implementation of a process to extract and

extend a software product line architecture will be developed. To accomplish this, it will:

� Present an object-oriented version of FODA's feature model using UML and integrate

it into the Unified Software Development Process.

� Provide a mechanism for recovering architectures from base products, evolving those

architectures to the product domain, product line and products.

� Use non-proprietary software tools.

There are several reasons for developing this new approach:

� It has its basis in processes that have been demonstrated to be of value (SEI's FODA,

FAST and the horseshoe re-engineering model), but have not, as yet, been formalized

with newer technologies such as Object-Oriented Analysis and Design (OOAD) and

40

the Unified Modelling Language (UML). By leveraging the experiences gained with

these older technologies, we short-circuit the need to "reinvent the wheel" in terms of

underlying processes and give them currency that might not otherwise be obvious.

� Legions of software developers are being trained with a solid understanding of the

Unified Software Process (USP). Basing the extended processes on the USP further

leverages skills of designers, reducing even further their "learning curve", accelerating

their productivity.

� Looking at the problem of architecture extraction, implementation and evolution from

the perspective of features brings with it a strong aspect of traceability between user

requirements and the development of domain, product line, and application

architectures. Product development in some industries, such as telecommunications,

can be organized completely around features. The method can readily integrate in

such an organization.

� Designing a process within the scope of the existing range of computer aided software

engineering (CASE) tools produces a process that is more readily usable "out of the

box".

41

Chapter 5

FOOM - Feature-based Object Or iented Modelling

FOOM is an extension of SEI's FODA[22] and the elaboration of the Unified Software

Process described in detail in [8][11]. These processes and methodologies have proven to

be effective in their respective focus areas of domain analysis and object-oriented analysis

and design. FOOM represents a model that combines complementary aspects from each

into a process and a set of artifacts suitable for modelling software products based on a

family approach.

42

5.1 Expanding Feature-based Modelling

Languages such as the UML place a strong emphasis on capturing the user's requirements,

but bury them inside constructs such as use cases.

Recall that, for this work, features are used to group many requirements and their ensuing

design artifacts into a single entity [26]. From a modelling perspective, a feature could

include a primary use case plus its <<extends>> and << includes>> counterparts,

associated analysis and design objects, their associations, and, model elements such as

diagrams and entries in the data dictionary (Figure 5-1). This provides a very powerful

mechanism for capturing the essence of a system at a level of abstraction above that of a

standard USP / UML model.

It is easy to think of a feature as an autonomous, atomic elements of a software system

[26]. However, experience tells us that, in any nontrivial system, this is not the case.

Looking at a system from the feature level provides a macroscopic view of its static and

dynamic structure.

From a product line perspective, a feature can be considered to be an architectural pattern

taken from several instances of a product family's siblings. As will be shown in subsequent

sections, these patterns take shape as a products' commonalties and variabilities are

discovered.

43

5.1.1 Building a Feature Model Based on FODA

FODA is the progenitor of most modern domain and analysis modelling methodologies. It

builds on three fundamental sub processes: domain analysis, feature analysis and feature

modelling. Domain analysis focuses on identifying a product that is believed will form the

kernel of the product line. It also lists current and future sibling and descendant products.

Feature analysis applies commonality and variability analysis to develop a list of common,

required functions across the domain, as well as a top level list of their differentiating

characteristics. The results of feature analysis provide the constituent artifacts to populate

the feature model.

44

Use Cases
<<mo de l e lement>>

Sequence Diagram
<<model element>>

Analysis Object
<<model element>>

S tatechart
<<model element>>

Actor

D esign Object
<<model element>>

Feature
<<model element>>

1

1..*

1

1..*

1

1..*

1

1..*

1

*

1

*

1

1..*

1

1..*

Figure 5-1 A feature encapsulates structural and dynamic aspects of a product

5.1.2 An Object-Or iented Perspective of the Feature Model

The first building block of the feature model is a feature class. Considering FODA's

feature model, the feature class is specialized into three subtypes:

� Required features must be present for the system to function as intended. There is

normally only one version of a required feature for a given product.

� Alternate features are subclasses of required features with their differentiator being

that several versions or flavors of a particular feature are available, but only one

version can be used to provide that feature's functionality.

� Optional features are not required for the basic product to function, but rather they

provide functionality supplemental to the required feature set.

The next set of artifacts in the feature model relate to how the features are assembled and

the rules that guide their merger into a product. Packages are used to consolidate

Products and Features. On a first pass, aggregation can be used to illustrate the

composition of products with multiplicity implying a sense of required, alternative and

optional. [21] introduces the use of stereotyping associations to further refine the

aggregation rules. Figure 5-2 illustrates these relationships.

45

5.1.3 Adding Precision to the Feature Model

Although these basic constructs are sufficient to build a complex feature model, the

maintenance efforts as the product line evolves could be substantial. The model can be

simplified with the introduction of a feature list, which is a contract between the product

and the feature set of the product family. It becomes an association class between the

product and the features. The aggregation rules are the class invariant, written in the

Object Constraint Language (OCL)[12]. Reducing the relationships to a few lines of OCL

46

Produc t Features
& Functions

Products

Feature

FeatureModel 1

1..*

1

1..*

Optional Feature

Alternate Feature

Product
<<product>>

1

0..1

1

0..1

<<optional>>1

0..*

1

0..*

<<XOR>>

Required Feature

1

1 .. *

1

1 .. *

<<required>>

Figure 5-2 Building the feature model with basic aggregation and multiplicity techniques

substantially reduces ongoing maintenance and keeps the model readable. Figure 5-3

illustrates the relationship.

Start by creating the feature list for the product line. Its class invariant contains

enumeration of the members of the product families plus enumeration of the required,

alternative and optional features.

cont r act <Pr oduct Li ne>
Pr oduct Type enum{ Pr oduct 1, Pr oduct 2, , Pr oduct N}
Requi r edFeat ur es enum{ RFeat ur e1, RFeat ur e2, . . . , RFeat ur eN}
Al t er nat eFeat ur es enum{ AFeat ur e1, AFeat ur e2, . . . , AFeat ur eN}
Opt i onal Feat ur es enum{ OFeat ur e1, OFeat ur e2, . . . , OFeat ur eN}

end cont r act ;

47

Figure 5-3 Using a contract to simplify the relationship between the Products and
Features in the Feature Model.

Product Features
and Functions

Products

Required FeatureAlternate Feature Optional Feature

P roduct
<<product>> Feature

1 1..*1 1..*

FeatureModel
1

1..*

1

1..*

FeatureL ist
<<contract>>

1

1..*

1

1..*

From there, we can develop contracts for the feature lists of the individual products in the

product line.

cont r act <Pr oduct >
sel f . Requi r edFeat ur esLi st - >i ncl udes(RFeat ur e1) and
sel f . Requi r edFeat ur esLi st - >i ncl udes(RFeat ur e2) and
. . .
sel f . Requi r edFeat ur esLi st - >i ncl udes(RFeat ur eN) ;

sel f . Al t er nat eFeat ur esLi st - >i ncl udes(AFeat ur e1) and
sel f . Al t er nat eFeat ur esLi st - >i ncl udes(AFeat ur e2) and
. . .
sel f . Al t er nat eFeat ur esLi st - >i ncl udes(AFeat ur eN) ;

sel f . Opt i onal Feat ur esLi st - >i ncl udes(OFeat ur e1) ;
end cont r act ;

The inheritance relationship between the product line and family members' contracts is

shown in Figure 5-4. Use of enumeration of products and features and Boolean

expressions allows for a very concise definition of an individual product's features.

48

Figure 5-4 Relationship between product line and product feature contracts

Produc tLi neFeatureList
<<contrac t>>

Product1FeatureList
<<contract>>

Product2FeatureList
<<contract>>

ProductNFeatureList
<<contract>>

• • •

5.1.4 Feature Discovery and Propagation

When building the Feature Model, it may not be obvious exactly how a product's features

are identified. Work on the application described in the next chapter provided a means of

formalizing this process.

The first pass at feature discovery started with the user-visible behaviors and outcomes[3].

Commonality and variability analysis of the system behaviors and attributes served to

subdivide the features. One set was still directly visible to the user - that is observable via

one of the system "boundaries" - and also served to distinguish one product from another.

 Work on the sample application gave rise to the notion that the features discovered in

domain analysis would become the use cases around which the target architectures would

be built.

Another set of features was found to be common to all or most of the products, but they

were not directly visible to the user. These features were reclassified as functions as they

provide the infrastructure on which the features operate or "function". They also serve to

aggregate sub components of different features. When building target architectures, there

was a strong correlation between them and the "actors" in the analysis. For this reason,

and their correlation with the features, they remain part of the feature model.

49

5.1.5 Integrating the Feature Model

Now that the internal structure of the Feature Model has been explored, its relationship to

the other parts of USP must be determined. [20] discusses the relationship of the feature

model from a stakeholder perspective: the feature model is a mechanism for refining the

requirements elicited during analysis and is related to the design assets as illustrated in

Figure 5-6a. Figure 5-6b extends this view, incorporating the constituent artifacts of the

object model.

50

Feature Model
User visible Not visible to

user

Feature

PrimaryUseCase

identify

Function

Actor

Figure 5-5 Correlation of the features and functions to the USP Analysis Model

Next, recall the UML description of a feature (Figure 5-6c). Examination shows a

correlation between its constituents and the USP Use Case, Analysis, and design Models.

Building on the relationship between features and the object models (analysis, design) , it

was concluded that the feature model bridges the analysis and design models. Features

populate these models (Figure 5-7), from which modelling continues.

51

Figure 5-6 The feature model bridges the analysis and design models.

User

Use Case M ode l

requ irements

Analysi s Mode l

Design Model

Elem ents of Use
Case Model

El ements of
Analysis M ode l

Element o f
Design Model

Actor

Design Obj ect
<<model e lem ent>>

Sta techart
<<m ode l element>>

UseCases
<<model e lem ent>>

Feature
<<model e lem ent>>

1

1..*

1

1..*

1

0..*

1

0..*

1 1..*1 1..*

1

1. .*

1

1. .*

Ana lysis Ob ject
<<model e lem en t>>

0..*

1 ..*

0 ..*

1 ..*

1
*

1
*

Sequence Diagram
<<m odel element>>

11..* 11 ..*

User

Dic ti onary

Feature M ode l
+refi ne

+verify

features

Object M ode l

Use Case Model

r equ irements

a)

b)

c)

Dicti onary

Feature Model
+refi ne

+veri fy

fea tures

52

D
ep

lo
ym

en
t D

ia
gr

am

S
ub

sy
st

em
 C

la
ss

 d
ia

gr
am

A
na

ly
si

s
O

bj
ec

t
F

ea
tu

re
 C

la
ss

 D
ia

gr
am

S
ub

sy
st

em
 D

ec
om

po
si

tio
n

1

1

1

11

1.
.*

1

1.
.*

S
eq

ue
nc

e
D

ia
gr

am

D
es

ig
n

O
bj

ec
ts1.
.*

1.
.*1.

.*

1.
.*

1.
.*

1.
.*

1.
.*

1.
.*

S
eq

ue
nc

e
D

ia
gr

am

1.
.*

1.
.* 1.
.*

1.
.*

S
ta

te
ch

ar
t

A
na

ly
si

s
C

la
ss

 D
ia

gr
am

1.
.*

1

1.
.*

1

U
se

 C
as

e
D

ia
gr

am

F
ea

tu
re

 M
od

el

D
es

ig
n

M
od

el

1

1.
.*

1

1.
.*

1

1.
.*

1

1.
.*

A
na

ly
si

s
M

od
el

1

1.
.*

1

1.
.*

1

1

1

1

de
fin

es

U
se

 C
as

e
M

od
elD

ic
tio

na
ry

S
of

tw
ar

e
A

rc
hi

te
ct

ur
e

11

1

0.
.1

1

0.
.1

1

1

1

1

1
1

1
1

1

1

1

1

R
eq

ui
re

m
en

ts

1

*

1

*

Figure 5-7 Relationship between the Feature Model and the Analysis and Design
Models

The resulting model (Figure 5-8) is also multidimensional, and, still entirely supported by

an object model. The relationship between the analysis and design models remains. There

is also an independent relationship between the analysis and feature models, where

evolution may occur without the need to also build the design model. Similarly, the

feature and design models may evolve independent of analysis. However, this should not

be done until individual product architectures are being developed from the product line

architecture.

53

Figure 5-8 Multidimensional relationships between the analysis, feature and design
models in FOOM.

5.2 Architecture Transformation and Evolution

The transformation process for FOOM is based on the horseshoe re-engineering model

and its latest form CORUM II [19]. It involves re-engineering an architecture from an

abstract level - plans and specifications rather than code - giving rise to a product

architecture that can be transformed to a new paradigm. FOOM builds on this approach,

focusing on migrating architectures from the base product through to domain, product line

and product architectures from the conceptual level only.

There is an assumption that there exists a base product from which downstream

architectures. If that is not the case, then the domain architecture will have to serve as the

starting point for the product line. It is also assumed that the base product's architecture is

well defined. If that is not the case, an architecture must be extracted before the

transformation can proceed.

Once a base product has been identified and its architectural assets deemed to be suitable,

a series of transformations are performed to migrate the architecture, first to a domain

architecture, sufficiently abstracted to represent all products in the domain. From there,

variability analysis provides attributes that differentiate one product from another, leading

to a product line architecture. The final step is to develop the rules for deriving a

single-system architecture from the product line architecture. Figure 5-9 provides a

pictorial description of this process. Figure 5-10 provides a UML perspective of the same

logical transformation.

54

55

Analysis of
an Existing

System

Logical Transformation

Development
of New
System

Domain
Architecture

Product-Line
Architecture

Domain
Analysis

Commonality /
Variability Analysis

Base Product
Architecture

Legacy
Assets

New Product
Assets

Conceptual
View

Execution
View

Module
View

Conceptual
View

Code
View

Code
View

Execution
View

Module
View

New Product
Architecture

Base Product
Functional &

Non-functional
Requirements

New Product
Functional &

Non-functional
Requirements

Features

Runtime Entities &
Communication

Modules

Source
Components

Figure 5-9 Horseshoe model modified for software product line development.

Figure 5-10 Relationships of the different stages of the architecture transformations

Base Product Architecture Product ArchitectureProduc t Line ArchitectureDomain Architecture

Product Domain

describes

Product

describes

Product Line

describes

1 1. .*1 1. .* 1 *1 *

Base Product

describes

11 11

In the same manner that we use the USP to design software systems, a process model can

be built. The use case diagram, as illustrated in Figures 5-11 shows each of the

transformation processes as a use case; the participating objects, architectures, products

and product features, are actors.

56

Product List

Product Features
List

Base Product
A rchitecture

Domain
Arch itecture

Product
Architecture

SW Architect

Recover base product architecture

Dev elop Product Architec ture

Identify products in domain

Identify product features

<<includes>>

<<includes>>

Commonality Analysis

Domain Analysis

<<extends >>

<<includes>>

<<includes>>

Logical Transf ormation

<<includes>>

<<includes>>

<<includes>>

Product Line
Architecture

Feature Contract

Develop Product Line Architecture

<<includes>>

Variability analysis

<<includes>>

<<includes>>

<<includes>>

<<includes>>

Figure 5-11 Use case model of the logical transformation from a base product to a
product line architecture

5.2.1 Modelling Strategies

Due to the close relationship between features and use cases, it is not obvious which

artifact should drive architecture development. Two modelling strategies are possible[14]:

� Feature-driven development is appropriate for mature organizations where domain

experts, with experience in developing similar products are available. This permits

exploration of architecture alternatives early in the product line development cycle.

Feature-modelling focuses on the commonalties in a product line feature set and

introduces variabilities as refinements. Use cases serve to identify and define the

structure and behavior of the systems suitable for implementation by designers.

� Use-case-driven development is suitable in less mature organizations including

projects of mature companies in a new domain, or situations where availability of

domain expertise is limited. Use-case-modeling can serve to provide a product vision

where one does not already exist or where it is not clearly defined.

There are several issues to consider in selecting a modelling strategy. One is the

relationship between the base product architecture and its successors. Although it may be

well understood (the USP is after all use-case-driven), the results of its transformation into

the domain architecture is not clear at the beginning of the exercise. On the other hand,

features are used to align the designer's focus with that of the user. This abstraction

makes FOOM architecture-centric, providing a high level view of the product line and

avoiding the loss of clarity where conceivably hundreds of use cases could eventually be

required. FOOM also assumes domain expertise is available in the form of an existing

57

base product and architects who have built similar systems.

A balance needs to be found between these opposing strategies. Work on the example

provided a compromise solution. A use-case driven strategy is used to migrate from the

base product architecture to the domain architecture. FOOM then uses a feature-driven

strategy (Figure 5-12) for subsequent transformations..

58

OBJECT MODEL
FEATURE MODEL

Derivation
of Objects

Derivation of
Features

USE CASE MODEL

Consistency
Analysis

OBJECT MODEL

FEATURE MODELDerivation
of Objects

Derivation of
Use Cases

System Responsibilities

USE CASE MODEL

Validation of feature semantics,
discovery of new features

a)

b)

Derivation

Feedback, verification, analysis

Figure 5-12 Modelling strategies used in FOOM [14]: a) feature-driven
b)use-case-driven

5.2.2 Steps in the Architecture Transformation Process

Each of the steps in the architectural transformation can be documented as workflows in

the same manner as use cases.

5.2.2.1 Base Product Architecture Recovery

Table 5-1 Base product architecture recovery workflow

Base product architecture definedPostcondition(s)

1. Identify primary use cases from existing requirements
documents

2. Elaborate each use case
3. Build analysis model (sequence and analysis class

diagrams)
4. Build design model (subsystem decomposition and

software deployment)

Flow of events

� Domain experts have identified a product suitable to
use as the base product

� The architecture for the candidate base product is not
adequately documented

Precondition(s)
SwArchitect, BaseproductArchitectureParticipating actors
BaseProductArchitectureRecoveryUse case name

5.2.2.2 Domain Architecture Development

1. Identify current and future products in the domain
2. Identify features of all products to be included in the

domain.
3. Commonality analysis identifies functions
4. Top level features identify use cases
5. Elaborate use cases based on sufficiently abstracted

features such that no difference between products
exists.

6. Build domain feature model, identifying modelling

Flow of events
Product domain can be identified and boundedPrecondition(s)

SwArchitect, BaseProductArchitecture,
DomainArchitecture, ProductFeaturesList, ProductList

Participating actors
DevelopDomainArchitectureUse case name

59

Table 5-2 Domain architecture development workflow

Domain architecture developed.Postcondition(s)

elements associated with each feature.
7. Build the analysis model based on the model elements

for each feature in the Feature Model
8. Refine the analysis model to accommodate

relationships that arise as a result of multiple feature
inclusion

9. Build and refine the design model based on the model
elements from each feature in the Feature Model

10. Refine the design model to accommodate relationships
that arise as a result of multiple feature inclusion

DevelopDomainArchitectureUse case name

5.2.2.3 Product L ine Architecture Development

Table 5-3 Product line architecture development workflow

Product Line Architecture developedPostcondition(s)

1. Variability analysis identifies product features
2. Build the product line Feature Model from the domain

features, using variabilities of each product to refine
existing use cases and identify new ones.

3. Build product line and individual product feature
contracts

4. Populate the use case, analysis and design models with
components from each fetaure.

5. Refine the use case, analysis and design models to
accommodate relationships that arise as a result of
multiple feature inclusion

Flow of events
Domain architecture has been developedPrecondition(s)

SwArchitect, DomainArchitecture, Product Line
Architecture, ProductFeaturesList, ProductList, Product
Line Feature Contract

Participating actors
DevelopProductLineArchitectureUse case name

60

5.2.2.4 Product Architecture Development

Table 5-4 Product architecture development workflow

Product Architecture developedPostcondition(s)

1. Build the product line Feature Model based on the
feature contracts of the product line and the product.

2. Populate the use case, analysis and design models with
components from each feature.

3. Refine the use case, analysis and design models to
accommodate relationships that arise as a result of
multiple feature inclusion

Flow of events
Product Line has been developedPrecondition(s)

SwArchitect, Product Line Architecture, Product
Architecture, Product Line Feature Contract, Product
Line Feature Contract

Participating actors
DevelopProductArchitectureUse case name

61

5.3 Sum of the Par ts

When the extensions of each of the supporting methodologies are aggregated in the new

model, a new set of processes arises that generate product line architectures that are

entirely object-oriented. The same types of artifacts are produced for each constituent

architecture. A feature model at each stage of architecture development allows the

evolution of each feature to be tracked. It also provides, in a single model, the ability to

develop road maps for future evolution (Figure 5-13).

5.3.1 Traceability and Stereotyping

In order to provide a very clear traceability mechanism, a series of object stereotypes are

used, giving a clear indication of the development stage to which an artifact belongs. The

general form of the stereotype is:

<<architecture + artifact>>

where architecture is the current phase in the logical transformation process and artifact is

the object type. Table 5-5 lists labels that are used in FOOM.

Table 5-5 Examples of stereotype label components to provide traceability in software
product family architecture development.

feature, function, entity, boundary, controller, subsystem, artifacts
base product, domain, product-line and productarchitectures
ExamplesLabel

62

63

B
as

eP
ro

du
ct

A
rc

hi
te

ct
ur

e
D

om
ai

nA
rc

hi
te

ct
ur

e
P

ro
du

ct
Li

ne
A

rc
hi

te
ct

ur
e

P
ro

du
ct

A
rc

hi
te

ct
ur

e

D
ep

lo
ym

en
t D

ia
gr

am

S
ub

sy
st

em
 C

la
ss

 d
ia

gr
am

A
na

ly
si

s
O

bj
ec

t
F

ea
tu

re
 C

la
ss

 D
ia

gr
am

S
ub

sy
st

em
 D

ec
om

po
si

tio
n

1

1

1

11

1.
.*

1

1.
.*

S
eq

ue
nc

e
D

ia
gr

am

D
es

ig
n

O
bj

ec
ts1.
.*

1.
.*1.

.*

1.
.*

1.
.*

1.
.*

1.
.*

1.
.*

S
eq

ue
nc

e
D

ia
gr

am

1.
.*

1.
.* 1.
.*

1.
.*

S
ta

te
ch

ar
t

A
na

ly
si

s
C

la
ss

 D
ia

gr
am

1.
.*

1

1.
.*

1

U
se

 C
as

e
D

ia
gr

am

F
ea

tu
re

 M
od

el

D
es

ig
n

M
od

el

1

1.
.*

1

1.
.*

1

1.
.*

1

1.
.*

A
na

ly
si

s
M

od
el

1

1.
.*

1

1.
.*

1

1

1

1

de
fin

es

U
se

 C
as

e
M

od
elD

ic
tio

na
ry

S
of

tw
ar

e
A

rc
hi

te
ct

ur
e

11

1

0.
.1

1

0.
.1

1

1

1

1

1
1

1
1

1

1

1

1

R
eq

ui
re

m
en

ts

1

*

1

*

Figure 5-13 The same artifacts are used to describe the architecture at each step in the
transformation process

Figure 5-14 shows the three dimensional nature of FOOM. There is a very close

relationship between all the submodels with the object model. All submodels are internally

consistent with their siblings in each architectural level and with their descendants.

5.4 Summary

The development and evolution of software product family models has lagged far behind

the adoption of object-oriented modelling techniques used for single systems. Fortunately,

tried and true methods do not have to be scrapped; rather, they can be modernized by

abstracting their more salient aspects and integrating them with modern methods. The

64

Figure 5-14 FOOM uses the same methodologies and artifacts, in a tightly coupled
relationship, to model architectures at each step in the transformation process.

model presented here does exactly that: it introduces the feature model as an integral

component of a software architecture, provides mechanisms for migrating architectures

and instantiating products. It also provides a view of the product line sufficiently

abstracted to allow for the development of medium- and long-term evolution road maps.

65

Chapter 6

Model Application -

A Family of Sonar Systems

This chapter covers the step by step application of FOOM on an example application - a

family of sonar systems. Its hypotheses in modelling the architectures of a complete

product family are tested, validated and refined. Although none of these systems is

currently in production, they are based on existing systems and future prototypes of

military antisubmarine and speciality sonars.

66

6.1 What is Sonar?

Sonar is a system that captures transmitted and reflected sound in order to detect and

locate underwater objects. An active sonar captures the reflected waves of transmitted

acoustic energy (the characteristic "ping"). Passive sonar listens to the background

acoustics of the marine environment. The primary function of any sonar is to capture

acoustic energy from the marine environment, digitize the analog input, process the data,

and display results on the operator console. Modern sonars use combinations of complex

hardware and software to perform their designated tasks and control the systems

themselves. A transducer is used to capture the acoustic energy, whether it is background

noise or reflected from a ping originating from a transmitter. The transducer also

performs the analog to digital conversion. The digitized information is then forwarded to

a digital signal processor that performs real-time algorithmic analysis to identify acoustic

features. The features are displayed on the operator console. The whole system is

controlled by the sonar controller, which also provides an interface to the command and

control systems of the ship. Figure 6-1 provides an overview of this process.

67

Data Flow

Control Flow

Sonar
Controller

Transmitter

Transducer

Digital Signal
Processor

Operator
Console

Figure 6-1 Sonar system overview

In this analysis, four types of systems which are deemed to be sufficiently diverse as to

represent a good cross-section of the sonar domain are examined.

1. Hull-mounted sonar (HMS): An all-purpose type that does many tasks reasonably

well, but excels at one: detect submarines in active mode (transmitting acoustic

energy into the water and listening for echoes on a specified frequency). It is also

capable of performing passive detection (listen only), using different digital signal

processing (DSP) and display software than that used for active detection. The

primary computing assets are a DSP, system control and an operator console. What

characterizes this type of system is that its transmitter and transducer (sometimes

referred to as the "wet end") are mounted in a housing external to the ship's hull, along

the keel, about one third of the ship's length from the bow.

2. Variable Depth Sonar (VDS): This system incorporates essentially the same

computing assets and functionality as an HMS. Its distinguishing feature is that its wet

end is in a separate winch-controlled tow body which is pulled behind the ship. The

reason for such a configuration is beyond the scope of this document. Suffice it to say

that it is the only way to detect objects in the ocean below the prevalent thermal

boundary layer at a depth of about 300 to 400 meters.

3. Towed-Array Sonar (TAS): This system is a passive type with computing hardware

similar to active systems, but requiring only the software for passive DSP and displays.

Its physical configuration is characterized by a winch-controlled string of hydrophones

(underwater microphones) towed behind the ship (hence, towed array) in place of the

transducer used in HMS and VDS.

68

4. Mine Hunting Sonar (MHS): Very similar to an HMS, this type of system operates at

much higher frequencies than other active sonars. Additionally, its transmitter and

transducer are located at the ship's bow, rather than the more amidship positioning of

an HMS.

Figure 6-2 illustrates the various configurations of these products. In this example, the

HMS, VDS and TAS will be considered as existing products. Mine hunting will be

examined as a retrofit to the HMS and as a new product.

To support the development of the architectures for this product line, a typical systems

level description of the Hull Mounted Sonar is provided in Appendix B.

69

Legend

Transmitted Acoustic Energy Reflected / Background
Acoustic Energy

Transmitter / Transducer

a)

Tow Body

Tow Cable

b)

Towed Array

c)

Transmitter / Transducer

d)

Figure 6-2 Types of sonar: a) Hull Mounted b) Variable depth c) Towed array d)
Mine hunting

6.2 Applying FOOM to Sonar Systems

The application of FOOM to the family of sonar systems is done in a systematic fashion,

starting with the identification of a suitable base product. If the base product's

architecture is not defined in a form consistent with the processes outlined here, then some

architecture extraction work is required. Such was the case with the system identified as

the base product for our example - the hull mounted sonar. Once the base product

architecture is defined, it is revisited to adapt it to our model. Extraneous use cases are

removed, notations are modified to conform the traceability rules through stereotypes,

and, a feature model is developed.

Domain analysis identifies current and future members of the product family and the

features - user visible behaviors and attributes - for each product. Through abstraction,

differences between the products are removed so that a domain architecture, including a

domain feature model, can be developed. The importance of a product-agnostic

architecture should not be overlooked. Such a perspective permits the architect to

envision new applications in the domain, and, quite possibly, to expand the domain itself.

To develop the product line architecture, which will eventually form a framework for all

applications in the product family, variability analysis re-associates features with their

respective products. However, in the product line approach, this association is done with

the intent of reducing the code base as much as possible, applying inheritance and

parameterization as much as possible.

70

With a product line framework in place, contracts for each family member are developed

to formalize their feature content. This formalization provides a mechanism more concise

than UML's multiplicity and, given that there is a single instance of it in the model, makes

the model more maintainable.

As the architecture transformation progresses, the focus will be on the development of the

feature model. The importance of the analysis and design models is not being trivialized.

It is recognized that a solid understanding of these architectural components is key to

developing a successful product, but they are processes that are already well defined and

understood.

The relationship between the feature model and the analysis and design models changes as

a function of the stage of logical transformation. The analysis model relationships

dominates the early stages - domain engineering - due to its abstract nature. The design

model will be of more interest as the product line architecture is developed, since it is at

this point that assets that will be applied to real products are being created.

6.3 Adapting the Base Product Architecture

For this application, the Hull Mounted Sonar (HMS) has been selected as the base product

for two reasons. It is known to include functionality found in several competing speciality

sonars, but, apart from submarine detection, its performance isn't comparable. Experience

71

also shows it to be very adaptable when new functionality is required.

Adapting the architecture model of the HMS - whose data dictionary is included as

Appendix C for the purposes of documenting the detailed aspects of the architecture - to

be suitable for the logical transformation to domain and product line architectures, starts

with selecting the top 5-20% of the use cases. These use cases will identify all the major

software components[18]. A new analysis model is developed from these use cases,

modifying the model's stereotyping notation to reflect that it is the base product. From

there, the Feature Model is constructed by transforming the analysis classes and control

objects to functions and features.

For the HMS, the following use cases were selected:

Table 6-1 Primary hull-mounted sonar use cases

Process (Rx/Tx) messages between sonar and ship's
command and control system

ProcessCCSMessages
Analyze acoustic features to detect potential targetsUpdateTracks
Process a command from the operator consoleProcessOperatorCommand

Displays acoustic features, tracks and other visuals on
the operator console

DisplayAcousticFeatures
Process and display income passive acoustic featuresPassiveDetection
Detect objects in the surrounding waterActiveDetection

Manage power-up sequences and initial configuration
of subsystems

InitializeSystem
DescriptionUse Case Name

The revised use case diagram, Figure 6-3, using only the primary use cases, highlights

what will eventually become the major components of the feature model. The use cases

become features because these are what are visible to the user. In addition to these, there

72

are also many control, processing and I/O objects that represent underlying functionality,

but are not directly visible to the user. In FOOM, the definition of external actors as

described in [31] is altered to reflect user visibility. They are represented by the actors in

the diagram and will be identified as "functions" in the Feature Model class diagram,

Figure 6-4. Objects are created based on the actors that are not directly user visible and

designate them with the stereotype <<base product function>> . Similarly, objects are

created based on user-visible boundary objects and assign them stereotypes

<<base-product feature>>.

73

Track Processor

Transm itter

CCS Interface

Transducer

Signal Processor

Sonar C ontroller

Active Detection

<<base-product use case>>

Process CCS Messages

<<base-product use case>>

Hull Mounted Sonar

Operator

Display Acoustic Features

<<base-product use case>>

<<includes>>

Passive Detection

<<base-product use case> >

<<includes>>

Upda te Trac ks

<<ba se -produc t use case>>

<<i ncludes>>

< <includes>>

Process Operator Comm and

<<base-product use case>>

Operator Console

Figure 6-3 Base product use case diagram

74

Figure 6-4 Base product feature model

U
pd

at
eT

ra
ck

s
<

<
ba

se
-p

ro
du

ct
 fe

at
ur

e>
>

T
ra

ck
P

ro
ce

ss
or

<
<

ba
se

-p
ro

du
ct

 fu
nc

tio
n>

>
1

1
1

1

A
ct

iv
eD

et
ec

tio
n

<
<

ba
se

-p
ro

du
ct

 fe
at

ur
e>

>
P

as
si

ve
D

et
ec

tio
n

<
<

ba
se

-p
ro

du
ct

 fe
at

ur
e>

>

1

1

1

1

C
cs

In
te

rf
ac

e
<

<
ba

se
-p

ro
du

ct
 b

ou
nd

ar
y>

>

H
m

sT
ra

ns
du

ce
r

<
<

ba
se

-p
ro

du
ct

 fe
at

ur
e>

>

1

1

1

1

1

1

1

1

H
m

sT
ra

ns
m

itt
er

<
<

ba
se

-p
ro

du
ct

 fe
at

ur
e>

>

1

1

1

1

H
m

sD
ig

ita
lS

ig
na

lP
ro

ce
ss

or

<
<

ba
se

-p
ro

du
ct

 fu
nc

tio
n>

>

1 11 1

1

1

1

1

H
m

sS
on

ar
C

on
tr

ol
le

r
<

<
ba

se
-p

ro
du

ct
 fu

nc
tio

n>
> 1

1

1

1

co
nt

ro
l

1

1

1

1

1

1

1

1

1

1

1

1

1 11 1

in
te

rf
ac

e

1
1

1
1

co
nt

ro
l

P
ro

ce
ss

C
cs

M
es

sa
ge

<
<

ba
se

-p
ro

du
ct

1

1

1

1

T
cp

Ip
M

id
dl

ew
ar

e

<
<

ba
se

-p
ro

du
ct

 fu
nc

tio
n>

>

In
iti

al
iz

eS
ys

te
m

<
<

ba
se

-p
ro

du
ct

 fu
nc

tio
n>

>

P
ro

ce
ss

O
pe

ra
to

rC
om

m
an

d

<
<

ba
se

-p
ro

du
ct

 fe
at

ur
e>

>

D
is

pl
ay

A
co

us
tic

F
ea

tu
re

s

<
<

ba
se

-p
ro

du
ct

 fe
at

ur
e>

>

O
pe

ra
to

rC
on

so
le

<
<

ba
se

-p
ro

du
ct

 fu
nc

tio
n>

>

6.4 Developing the Domain Feature Model

Once there is a good understanding of the base product as represented by architectural

artifacts (analysis, feature and design models), development of the domain architecture can

proceed. The object of this set of activities is to distil the base product architecture so

that it can be applied to all products in the domain. The domain architecture process

begins with identifying all the products, current and future, in the domain. From that list,

commonality and variability analysis is applied to determine the features and functions that

are found in each product. This gives rise to a new domain feature model which then

helps to populate domain use case diagram.

6.4.1 Understanding the Products in the Domain

As stipulated at the beginning of this chapter, the products in the sonar domain that will be

used to apply FOOM are: hull-mounted, variable depth, towed-array and mine-hunting

sonars. The product-feature matrix [26] in Table 6-2 identifies the base product feature,

or some version of them, that would be included in each of the domain products.

Examination of Table 6-2 reveals that Active Detection and Passive Detection features are

not common across all products. Abstraction of this feature to Detect Acoustic Features

is sufficiently general to be applicable to all products.

75

Table 6-2 Summary of features for the various sonar types

••••••
Mine
Hunting

•••••
Towed
Array

•••••••
Variable
Depth

•••••••
Hull
Mounted

C
cs

C

om
m

'n
.

P
ro

ce
ss

O
pe

ra
to

r
C

om
m

an
d

A
co

us
ti

c
F

ea
tu

re
s

D
is

pl
ay

T
ra

ck
P

ro
ce

ss
in

g

P
as

si
ve

D
et

ec
ti

on

A
ct

iv
e

D
et

ec
ti

on

Sy
st

em
In

it
.

Sonar
Type

Product Features

After the domain use cases have been determined, defining the underlying functions that

will support the features follows. Domain expertise is required to carry out this phase

since the architect cannot understand the inner workings of the systems without previous

firsthand experience in at least some aspect of their design. Table 6-3 lists the products

and the components required to implement them.

Note that there is a function present which has not as yet been seen - the Winch. It is

known that, although it is not part of the base product, it does exist in other systems. It is

listed here to capture its existence to provide traceability, but will be removed as the

product features are abstracted. Also note that passive systems do not have a transmitter,

causing it to be removed from the component list for the domain. It is not abstracted to a

common description similar to the development of the Detect Acoustic features use case.

Instead, for the purposes of the domain model, the exact source of the incoming acoustic

76

Table 6-3 Summary of Product Functions for various types of sonar

••••••••
Mine
Hunting

••••••••
Towed
Array

•••••••••
Variable
Depth

••••••••
Hull
Mounted

W
in

ch

O
pe

ra
to

r
C

on
so

le

D
is

tr
ib

ut
ed

C
om

m
un

ic
at

io
n

Sy
st

em

C
C

S
in

te
rf

ac
e

T
ra

ck
P

ro
ce

ss
or

Sy
st

em
 C

on
tr

ol
le

r

D
ig

it
al

Si

gn
al

 P
ro

ce
ss

or

T
ra

ns
du

ce
r

T
ra

ns
m

it
te

r

Product Functions / Subsystem Controllers

energy is ignored and considered to be an outside stimulus. With these simplifications, the

domain functions are reduced to Transducer, Digital Signal Processor, System Controller,

Operator Console, Track Processor and CcsInterface. With these, the domain architecture

feature model and use case diagrams can be built See Figures 6-5 and 6-6 respectively.

It should be noted that, similar to the base product model, the communication middleware

does not appear in the use case diagram. This is done solely for clarity. Since it is known

that the sonar is a distributed system, the implication is that there is some form of

distributed communication system. The communication mechanism is, however,

introduced in the domain feature model for traceability purposes. The operating systems

could be treated in a similar manner.

77

So far, data objects - <<entity>> - have been ignored in the development of the feature

models for the base product and the domain. They can vary widely from product to

product in a given domain, such as sonar, their variation is easily modelled with

inheritance and parameterization and will continue to be left out of the models presented

in this document. Other domains where entities such as databases play a prominent role

require a more thorough treatment of these object types.

78

Figure 6-5 Sonar domain feature model

Tx
R

xC
cs

M
es

sa
ge

s
<<

do
m

ai
n

fe
at

ur
e>

>

D
is

pl
ay

A
co

us
tic

F
ea

tu
re

s
<<

do
m

ai
n

fe
at

ur
e>

>

P
ro

ce
ss

O
pe

ra
to

rC
om

m
an

d

<<
do

m
ai

n
fe

at
ur

e>
>

D
et

ec
tU

nd
er

w
at

er
F

ea
tu

re
s

<<
do

m
ai

n
fe

at
ur

e>
>

U
pd

at
eT

ra
ck

s
<<

do
m

ai
n

fe
at

ur
e>

>

D
ig

ita
lS

ig
na

lP
ro

ce
ss

or
<<

do
m

ai
n

fu
nc

tio
n>

>

1 11 1

S
on

ar
C

on
tr

ol
le

r
<<

do
m

ai
n

fu
nc

tio
n>

>

1

1

1

1

1
1

1
1

co
nt

ro
l

C
cs

In
te

rf
ac

e
<<

do
m

ai
n

bo
un

da
ry

>>

1 11 1

Tr
ac

kP
ro

ce
ss

or
<<

do
m

ai
n

fu
nc

tio
n>

>

1

1

1

1

C
om

m
un

ic
at

io
nM

id
dl

ew
ar

e
<<

do
m

ai
n

fu
nc

tio
n>

>

O
pe

ra
to

rC
on

so
le

<<
do

m
ai

n
fu

nc
tio

n>
>

1 11 1

11 11

co
m

m
un

ic
at

e

In
iti

al
iz

eS
ys

te
m

<<
do

m
ai

n
fe

at
ur

e>
>

1

1

1

1

11 11

Tr
an

sd
uc

er
C

on
tr

ol
le

r
<<

do
m

ai
n

bo
un

da
ry

>>

79

Sonar System
<<dom a in>>

T rack Processo r

Upda te T racks
<<dom a in use case>>

M arine

Envi ronm ent

S igna l Processo r

T ransducer

Display Acoustic Featu res
<<dom ain use case>>

Rx / T x CCS M essages
<<dom ain use case>>

Detect Underwa te r Featu res
<<dom a in use case>>

<<includes>>

<<in cl ud es>>

Process Opera to r Com m and
<<dom a in use case>>

In itia l i ze System
<<dom ain use case>>

CCS In te rface

Operato r Co nsole

Sonar Contro l le r

Operator

Figure 6-6 Sonar domain use case diagram

6.5 Developing the Product Family Feature Model

Now that the feature model for the domain has been developed, the next phase of the

logical transformation can proceed: developing the product line feature model. The

process starts with revisiting the product family members, performing commonality and

variability analysis to enumerate each product's features and functions. From there use

cases are identified. The goal is to build a hierarchical use case model derived from the

product family's features[33][35]. The domain features become the abstract superclass for

subfamilies of features found at the product line and product levels. This in turn generates

a hierarchy of use cases to drive the development of the product line analysis and design

models.

The process starts with building a table of all the features for all products in the family.

Each feature is examined to determine if it, or a more generalized form, can be found on

another product. If so, it is assigned the <<product line feature>> stereotype. In turn,

features found only on specific products are designated with the <<product feature>>

stereotype. This process must be done methodically to ensure that the true relationships

between the features throughout the product family are captured. To complete the

product line feature model, <<domain function>> objects are migrated to

<<product-line function>> objects.

Table 6-4 lists the major features in the product family and indicates the products that

would use them. They are used to build the feature model for the sonar product family.

80

See Figure 6-7.

Table 6-4 Sonar product line features (• = existing, * = future)

*
Special configuration of active
mode for detecting torpedoes

DetectTorpedoes

**
Special configuration of active
mode for detecting mines

DetectMines

•••
Default active configuration for
HMS / VDS

DetectSubmarines

*•••
Process (Rx/Tx) messages between
sonar and ship's command and
control system

ProcessCCSMessages

*•••
Detect objects in the surrounding
water

ActiveDetection

••
Set the acoustic energy transmission
type (CW or FM)

SetTransmissionType

*••
Set the angular window in which
detection will be carried out

SetDetectionZone

••
Set subsystems in active detection
mode

SetActiveMode

*•••
Sets the format for displaying
acoustic features

SetDisplayFormat

*•••
Displays acoustic features, tracks
and other visuals on the operator
console

Display Acoustic Features

•••
Process and display income passive
acoustic features

PassiveDetection

•••
Set subsystems in passive detection
mode

SetPassiveMode

*•••
Manage power-up sequences and
initial configuration of subsystems

InitializeSystem

M
H

S
*

T
A

S

V
D

S

H
M

S

DescriptionFeature

81

The product line features can be specialized versions of domain features where the

specializations vary amongst several subgroups in the product family, similar to [33][35].

An example in the sonar would be groups of active and passive sonars, and some that have

both functionalities. This allows the Subclassing of features.

The product line feature model (Figure 6-7) includes features of individual products to

provide a mechanism for correlating the products back to the product family. Two

specific areas in the feature model show multiple levels of specialization going from the

domain through to individual products: Detect Underwater Features and Display

Underwater Features. In situations where functions are applicable across the product line,

such as the sonar controller, the signal processor and the transducer, the association has

been left between the equivalent actor and the product line feature to avoid cluttering the

diagram.

Development of the product line use case diagram (Figure 6-8) begins with the mapping

of features to use cases and functions to actors. Unlike the normal practice for single

systems, the FOOM's product line use case diagram includes inheritance, aggregation and

other associations. This can cloud the underlying architecture.

82

83

A
ct

iv
eD

et
ec

tio
n

<<
pr

od
uc

t-
lin

e
fe

at
ur

e>
>

P
as

si
ve

D
et

ec
tio

n
<<

pr
od

uc
t-

lin
e

fe
at

ur
e>

>

Tx
R

xC
cs

M
es

sa
ge

s
<<

pr
od

uc
t-

lin
e

fe
at

ur
e>

>

S
et

D
is

pl
ay

F
or

m
at

<<
pr

od
uc

t-
lin

e
fe

at
ur

e>
>

O
pe

ra
to

rC
on

so
le

<<
pr

od
uc

t l
in

e
co

nt
ro

l>
>

1

1

1

1

C
cs

In
te

rf
ac

e
<<

pr
od

uc
t-

lin
e

bo
un

da
ry

>>

1 11 1

S
et

D
ef

au
ltM

od
e

<<
pr

od
uc

t-
lin

e
fe

at
ur

e>
>

1

1

1

1 In
iti

al
iz

eS
ys

te
m

<<
pr

od
uc

t-
lin

e
fe

at
ur

e>
>

1

1

1

1

<<
in

cl
ud

es
>>

1

1

1

1

1

1

1

1

<<
in

cl
ud

es
>>

D
is

pl
ay

A
co

us
tic

F
ea

tu
re

s
<<

pr
od

uc
t-

lin
e

fe
at

ur
e>

>

11 11

D
ig

ita
lS

ig
na

lP
ro

ce
ss

or
<<

pr
od

uc
t-

lin
e

fu
nc

tio
n>

>

11

11

W
et

E
nd

C
on

tr
ol

le
r

<<
pr

od
uc

t-
lin

e
fu

nc
tio

n>
>

1
1

1
1

1

1

1

1

S
on

ar
C

on
tr

ol
le

r
<<

pr
od

uc
t-

lin
e

fu
nc

tio
n>

>
co

nt
ro

l
co

m
m

un
ic

at
e

co
m

m
un

ic
at

e
1 11 1

1 11 1

1

1

1

1

D
et

ec
tU

nd
er

w
at

er
F

ea
tu

re
s

<<
do

m
ai

n
fe

at
ur

e>
>

<<
in

cl
ud

es
>>

1
1

1
1

1

1

1

1

1

1

1

1

Tr
ac

kP
ro

ce
ss

or
<<

pr
od

uc
t-

lin
e

fu
nc

tio
n>

>

U
pd

at
eT

ra
ck

s
<<

pr
od

uc
t-

lin
e

fe
at

ur
e>

>
<<

in
cl

ud
es

>>

11 11

M
in

e
H

un
tin

g
S

on
ar

<<
pr

od
uc

t>
>

S
te

al
th

M
on

ito
r

<<
pr

od
uc

t-
lin

e
fe

at
ur

e>
>

A
ct

iv
eS

ub
m

ar
in

eD
et

ec
tio

n
<<

pr
od

uc
t-

lin
e

fe
at

ur
e>

>

D
et

ec
tM

in
es

<<
pr

od
uc

t-
lin

e
fe

at
ur

e>
>

D
et

ec
tT

or
pe

do
es

<<
pr

od
uc

t-
lin

e
fe

at
ur

e>
>

To
w

ed
 A

rr
ay

 S
on

ar
<<

pr
od

uc
t>

>
V

ar
ia

bl
e

D
ep

th
 S

on
ar

<<
pr

od
uc

t>
>

H
ul

l M
ou

nt
ed

 S
on

ar
<<

pr
od

uc
t>

>

P
as

si
ve

S
ub

D
et

ec
tio

n
<<

pr
od

uc
t-

lin
e

fe
at

ur
e>

>

Figure 6-7 Sonar product line feature model.

84

Sonar Sys tem Produc t-Line

Transm itter

Act ive Det ec t ion
<<product -l ine us e cas e>>

Mine Detec tion
<<produc t use case>>

Submarine Det ect ion - Active
<<product use case> >

Torpedo Detec tion
<<produc t use case>>

Subm arine Detection - Pas sive
< <product use case>>

Stealth Monitor
< <product use case>>

Mine Hunting Display
<<produc t-line use c ase>>Sub Detec tion (Active) Display

<<produc t-line use case>>

Torpedo Detection Display
< <product -line use case> >

Stealth M onitor
<<product use case>>

Sub Detect ion (Pass ive) Display
<<produc t -l ine use case> >

Track Processor

Pa ssive Det ect ion
<<produc t-l ine use case>>

Update Tracks
<<product-line use case>>

Marine
Environm ent

Signal Processor

Transducer

CCS Interface

Sonar Controller

Set Passive Mode
<<product-line use case>>Set Active Mode

<<produc t-line use case>>

Set M ode
<<produc t-line use case> >

Operator Console

Detect Underwater Features
<<domain use case>>

<< inc ludes>>

Rx / Tx CCS M essages
<<produc t-line use case> >

Set Display Format
< <product-line use case>>

<< inc ludes>><<includes>>

Initialize System
<<product-line use case>>

<<includes>>

Display Acous t ic Feat ures
<<produc t-line use case>>

<< includes>>

Operator

Passive Det ection Display
<<product-line use case>>

Active Detec tion Displays
<<product -l ine use case>>

Figure 6-8 Product line use diagram

Examination of the feature model indicate that there are two features which touch on all

or most of the system: Active Detection and Passive Detection. Relying on FOOM's

definition of a feature - a user visible behavior or attribute that aggregates many

requirements, representation of a feature evolves to include aspects from both the product

line feature model and use case diagram.

Figures 6-9 and 6-10 include not only the artifacts usually found in use case diagrams, but

also include relationships between use cases and between actors. At this level of

granularity, the view of the entire system - the architecture - begins to take shape. Since

each major feature includes the same infrastructure, namely the <<function>> objects,

the architectures of all features in a single product and all the products in the domain will

be internally consistent.

While developing the product line feature model, the notion of use cases as architectural

patterns [26][32] began to evolve. Like design patterns, their detailed implementation can

vary significantly, but when viewed from the domain and product line perspective, very

few differences across products emerged. What this led to was a relaxation of the rigor in

performing analysis, because, in fact, the behaviors and attributes were quite similar. The

potential for productivity improvement is substantial, allowing architects to focus on

building the product framework and individual products, revisiting the analysis portion of

the models only for regression purposes or for introducing a feature not yet implemented

on any of the existing products.

85

86

Active Detection
<<product-l ine use case>>

Act ive Dete cti on
<<produc t-lin e featur e>>

D isplay Acoustic Features
<<pro du ct-l i ne us e cas e>>

Tr an sm i tter

Up date Tracks
<<product-l ine use case>>

Track Processor

Signal Pr ocessor

VariableD epth

Torpedo D etection
<<product use case>>

Subm ar ine D etection - Active
<<p roduct us e cas e>>

M ine Detection
<<product use case>>

Hull M ounted

M arine
E nvi ronm ent

Transducer

Sonar Controller

Operator Console

Operator

<< includes>>

Figure 6-9 Sonar family Active Detection feature

87

Underwater Feature Detection
<<product- line feature>>

Stealth M onitor D isplay
<<product use case>>

Tow ed Array

Subm arine Detection - Passive
<<prod uc t use case>>

Hull M ounted

Display Acoustic Features
<<p rodu ct- l ine us e cas e>>

Update Tracks
<<product-line use case>>

Track Processor

Sonar Controller

M arine
Environment

Operator

Opera tor Console

Signal Processor

Passive Detection
<<product- line use case>>

<< includes>>

<<includes>>

Transducer

Figure 6-10 Sonar family Passive Detection feature

6.6 Product Contracts

Now that the products in the family and the features available for each have been

identified, the process of building the product contracts begins. To review, these are the

invariants for association classes defining the relationship between the family members and

the feature set for the entire product line. These contracts are written in the Object

Constraint Language (OCL), a component of UML.

First look at the contract for the product line. It includes the enumeration of all the

features and functions available across all products, as well as the attributes for all

common functions and features. Using an inheritance relationship between the product

line feature contracts and the product contracts, the enumerations are passed to the sub

classed objects, via the class invariants for each.

For the sonar family, the product line contract class invariant is:

cont r act <Pr oduct Li ne>

- - I dent i f y t he pr oduct s i n t he f ami l y
Pr oduct Type enum{ HMS, VDS, TAS, MHS} ;

- - i dent i f y t he cur r ent set of f unct i ons avai l abl e
- - member s of t he pr oduct l i ne
Pr oduct Funct i ons enum{ Sonar Cont r ol l er ,

 Si gnal Pr ocessor ,
 Oper at or Consol e,
 Tr ackPr ocessor ,
 Tr ansducer ,
 Tr ansmi t t er ,
 Wi nch,
 CCS I nt er f ace
 } ;

- - i dent i f y t he cur r ent set of f eat ur es avai l abl e
- - member s of t he pr oduct l i ne
Pr oduct Feat ur es enum{ Act i veSubmar i neDet ect i on,

 Passi veSubmar i neDet ect i on,
 Det ect Mi nes,
 Det ect Tor pedoes,
 St eal t hMoni t or ,
 I ni t i al i zeSyst em,
 Di spl ayAcoust i cFeat ur es,

88

 Updat eTr acks,
 Set Di spl ayFor mat ,
 TxRxCcsMessages,
 Set Act i veMode,
 Set Passi veMode
 } ;
end cont r act ;

A typical contract for one of the family members identifies the features and functions

required to instantiate the architecture for that product. The feature contract for the

Hull-mounted sonar (HMS) is presented here

cont r act <HMS Pr oduct >

- - Speci f y t he pr oduct ' s f unct i ons
sel f . Funct i onsLi st - >i nc l udes(Sonar Cont r ol l er) and
sel f . Funct i onsLi st - >i nc l udes(Si gnal Pr ocessor) and
sel f . Funct i onsLi st - >i nc l udes(Oper at or Consol e) and
sel f . Funct i onsLi st - >i nc l udes(Tr ackPr ocessor) and
sel f . Funct i onsLi st - >i nc l udes(Tr ansducer) and
sel f . Funct i onsLi st - >i nc l udes(Tr ansmi t t er) and
sel f . Funct i onsLi st - >i nc l udes(CCS I nt er f ace) ;

- - Speci f y t he pr oduct ' s r equi r ed f eat ur es
sel f . Requi r edFeat ur esLi st - >i nc l udes(Act i veSubmar i neDet ect i on) and
sel f . Requi r edFeat ur esLi st - >i nc l udes(Passi veSubmar i neDet ect i on) and
sel f . Requi r edFeat ur esLi st - >i nc l udes(I ni t i al i zeSyst em) and
sel f . Requi r edFeat ur esLi st - >i nc l udes(Di spl ayAcoust i cFeat ur es) and
sel f . Requi r edFeat ur esLi st - >i nc l udes(Updat eTr acks) and
sel f . Requi r edFeat ur esLi st - >i nc l udes(Set Di spl ayFor mat) and
sel f . Requi r edFeat ur esLi st - >i nc l udes(TxRxCcsMessages) and
sel f . Requi r edFeat ur esLi st - >i nc l udes(Set Act i veMode) and
sel f . Requi r edFeat ur esLi st - >i nc l udes(Set Passi veMode) ;

- - Speci f y t he opt i onal f eat ur es t o be i nc l uded wi t h t hi s i nst ance of t he pr oduct
sel f . Opt i onal Feat ur esLi st - >i nc l udes(Det ect Mi nes) and
sel f . Opt i onal Feat ur esLi st - >i nc l udes(Det ect Tor pedoes) ;

end cont r act ;

6.7 Building the Product L ine Design Model

With the feature model for the known members of the product family, and a set of

contracts for each product in place, the task of examining each subsystem with respect to

the role it plays for each product begins. When completed, the design model will

represent the detailed design for an entire family of products. The largest constituent of

the design model is the subsystem decomposition class diagram and detailed views of each

subsystem. This section will be limited to the more interesting subsystems and provide

89

some perspective on how the structure was developed.

6.7.1 Operator Console Subsystem

The operator console is, by far, the most complex in terms of features. But this is to be

expected as it is, by nature, the subsystem with most interaction with the user. Start by

examining the two most obvious components of the operator console: the operator input

devices and the video display. The input devices are given a base class so that, although

not immediately evident, some reuse is possible.

The video, however, presents many possibilities for reuse, particularly in the various

display formats - the combination of graphic primitives used to convey information in a

meaningful form. Several of the sonars have active and passive submarine detection

displays. Others have displays, such as mine hunting and stealth monitoring, that are used

on only one product. However, by grouping these features at the product line level, the

possibility for reuse is exposed that might not otherwise be so evident. Figure 6-11 shows

the Operator Console subsystem class diagram from the product line architecture.

6.7.2 Digital Signal Processor Subsystem

The digital signal processor subsystem is a grouping of very complex algorithms with very

strict real-time performance constraints. It also presents opportunities for reuse, but this

time through parameterization, not inheritance.

90

The processing modules are divided along two lines, active and passive. Each uses a set

of algorithms different enough from each other that there would be no reason to

harmonize them. However, within active or passive modules, the algorithms are nearly

identical, varying according to parameter sets. In active sonar, these would include

transmission type, transmission frequency, and the number of channels collecting data

91

OperatorC onsole
<<p ro duct-line subsystem >>

SubDetectionActiveDisplay
<<product- line fea ture>>

SubDetectionPassiveD isplay
<<product-line feature>>

StealthMonitorDisplay
<<product feature>>

MineHuntingDisplay
<<product-line feature>>

Torpedo eDe tectionDisplay
<<product feature>>

Com munica tionP roxy
<<product-line function>>

ConsoleInputD evice
<<p ro duct-line boundary>>

OperatorConsole
<<product line control>>

VideoDisplay
<<product-line boundary>>

DisplayFormat
<<domain feature>>

Keyboard
<<product-line boundary>>

Trackball
<<product-line boundary>>

Joystick
<<product-line boundary>>

Figure 6-11 The Operator Console subsystem as defined in the product line design
model.

from the marine environment. Passive sonars would include a time index and the active

channels in the transducer. As complex as it is inside, from the product line perspective

the main engines of the signal processor modules can be represented with two

parameterized classes: ActiveProcessor and PassiveProcessor. Adding a

CommunicationsProxy provides a connection to the rest of the system. Figure 6-12

illustrates the product line view of the Digital Signal Processor subsystem.

92

ActiveProcessor
<<algor ithm>>

PassiveP rocessor
<<algorithm>>

Com municatio nProxy
<<product-line function>>

DigitalSignalP roces sor
<<product-line function>>

Digital S ignal Processor
<<product-line subsystem>>

Figure 6-12 Digital Signal Processor subsystem class diagram from the product line
architecture

6.7.3 The Command and Control (CCS) Inter face

The command and control interface, unlike the other systems, does not vary as a function

of the product to which it belongs. Instead, it varies as a function of the external

environment to which it will be connected. The flavors of the CCS Interface are, say,

CanadianNavy, USNavy and SwissNavy. The choice of which one will be used on a given

product is directly correlated to "affiliation" of the vessel on which any given sonar is

installed. This makes the CCS Interface, in essence, a product within a product. Figure

6-13 shows the CCS interface hierarchy.

93

CCS Interface
<<product-line subsystem>>

CcsInterface
<<product-line feature>>

C csCanadianNavy
<<product fea ture >>

CcsUsNavy
<<product feature>>

CcsSwissNavy
<<product feature>>

Figure 6-13 Command and Control Interface subsystem from the product line
architecture.

6.7.4 Software Deployment

With the software architecture for the product family in place, a deployment diagram is

developed to understand the relationship between the software and the hardware. Until

this point, it has been assumed that physical computing assets, of some form, would be

available on which the software would run. Performance requirements / constraints were

accounted for in the design.

The sonar product line deployment diagram shows the target nodes on which the software

components will be deployed. From this, software architects and systems engineers have a

common understanding of the types of hardware family members will require.

94

«domain node»
Operator Console

«product-line component»
OperatorConsole Subsystem

«domain node»
Distributed Communication Infrastructure

«product-line node»
Sonar Controller

«product-line component»
Sonar Controller Subsystem

«product-line component»
TrackProcessor Subsystem

«product-line component»
CcsInterface Subsystem

«product-line component»
Communications Subsystem

«domain node»
Signal Processor

«produc t-line component»
DigitalSignalProcessor Subsystem

«domain node»
Sonar Transducer

«product-line component»
T ransducerController Subsystem

0..1

1 1

1

1

1

1

1

0..1

1

«product-line node»
Sonar Transmitter Controller

«product-line component»
TransmitterControllerSubsystem

«product-line node»
Winch Controller

«product-line component»
WinchControllerSubsystem

-End1

*

-End2

*

Figure 6-14 Sonar product-line deployment diagram

6.8 Summary

In this chapter FOOM has been applied to a family of sonars as a test case. The model

was then systematically applied starting with a candidate for the base product, then

adapting its architecture so it is suitable for transformation to a domain and product line

architecture. Domain analysis identified other products as members of the product family.

From there commonality analysis permitted the development a domain architecture that

was product-agnostic. The first part of the transformation relied mostly on the analysis

portion of the USP to support the detailed architectural evolution. The design model,

particularly the subsystem decomposition, was developed primarily as a regression

mechanism to ensure the models were internally consistent as the transformation

progressed from one stage to the next.

Evolution of the product line architecture is where features in analysis served primarily as

design patterns for similar functionalities across products. The product line feature model

to assisted in identifying the components in each subsystem. Reviewing each feature

model exposed areas for productivity gains from reuse, inheritance and parameterization.

Throughout the process, the feature model served as the focus of the modelling effort.

Transformation of features and functions to model components during analysis provided a

connection between the user visible aspects of the system, and the infrastructure

underneath.

95

Finally, a series of processes have been provided that couple architecture development and

evolution with a modelling standard that is equally applicable at every step of the

transformation. The processes themselves and all their artifacts created along the way are

object-oriented.

96

Chapter 7

Conclusion

In this work, a set of processes has been developed that will assist an organization to

adopt a product line practice. This practice will be grounded in the most current of

modelling technologies, lend itself to constant evolution, and provide a high degree of

customer focus.

97

7.1 Evaluation of FOOM

FOOM represents the extension and amalgamation of several proven methodologies to

provide a set of feature-based architecture-centric development processes. It adopts the

UML notation using its extension mechanisms to provide an extra layer of traceability.

And, its macroscopic view of the product line exposes opportunities for reuse that might

not otherwise be apparent.

7.1.1 Feature-based Development

FOOM has extended the notion of a feature beyond that of FODA. A feature is not only

the view of a system and its components from the user's perspective. It also incorporates

many of the architectural assets and the relationships between them. This makes features a

form of architectural pattern.

FOOM takes the idea of a feature and extends the USP to include a feature model as a

peer to the use case, analysis and design models. A strong correlation has been

established between features and use cases providing a direct link for features to drive the

development of an entire product family.

These aspects of FOOM can be contrasted to FODA which does not provide a clear view

on the relationship between the feature model and any development process -

object-oriented or otherwise. FODA also does not put forth a set of processes for

evolving features, let alone architectures beyond the domain to product lines and

98

individual applications.

7.1.2 Architecture-centr ic System and Product L ine Development

Experience has shown that a well-defined stable architecture is key to the successful

development of individual systems. Product line development implies that the resulting

architectures must incorporate current, and known and unknown future projects.

However, as new products and features are introduced, the architectures must be

sufficiently malleable as to not "break" existing products. FOOM's high level view of

software systems provides architects and designers alike with a view that forces them to

examine the ripple effect of any new feature or change.

KobrA on the other hand takes a diametrically opposed view. It generates a "hardwired"

architecture early on in the development process. The intention is to free designers from

worrying about big-picture issues, allowing them to concentrate instead on developing

individual components to be plugged into a system. This ignorance of system level issues

can preclude an individual designer from adequately engaging architects as new features

and products are introduced.

FOOM's focus on architecture provides a seamless mechanism for adding a new feature to

one or more of the products or in the creation of new products, such as the addition of

minehunting to the HMS. The sonar example demonstrates this aspect of FOOM with the

mine hunting feature. In developing the product line architecture, no distinction was made

99

between existing and future features and / or systems. This implies that a product line

evolutionary road map can be built and maintained from the earliest stages of product

development. FODA does provide mechanisms for evolving features, but does not put

them in the context individual products.

FOOM's common architecture approach can facilitate the creation of a suite of systems

built from several members of the same family. In the case of sonar, this could be a

system that integrates separate mine hunting, towed array and hull mounted products on

the same ship. Their commonalties make possible the sharing of acquisition, signal

processing, display and control functionalities. Moreover, entirely new "integration

features" can be built from the artifacts of existing features and functions.

7.1.3 Application Generation

Mechanisms and languages for generating new product architectures based on the product

line architecture are built into FOOM. The feature lists at the product line and product

provide contracts for specify the features of new products; OCL defined guard conditions

and constraints provide the required precision at the product level. The UML / OCL and

the USP form the language for generating product architectures.

FAST provides placeholders for these mechanisms / languages but does not define them:

this is left to the development team to do. FODA focuses primarily on the domain aspects

of a product family, not providing specific mechanisms for application generation. KobrA

100

integrates decision models into the product line framework as text documents apart from

the models themselves.

7.1.4 Adoption of the USP and UML

FOOM's underlying processes rely heavily on the USP for building each of the required

architectures, making it easier to incorporate into an organization's software development

processes. Use of the UML - the de facto industry standard notation - eliminates the need

for learning new forms of "boxology" as designers move between organizations. Such

standardization permits the use of third party tools for building models, tracking

requirements and imposing configuration management and version control.

Methodologies like FAST require organizations to build tools to support the process,

consuming efforts of designers in tool rather than product development.

7.2 L imitations of FOOM

In its current form, FOOM does not explicitly provide guidance for instantiating a product

line architectures where a base product does not exist. With that said, the domain analysis

activites of FODA do provide insights into how this is done. These activities need to be

further formalized within FOOM to make the case of the inroduction of a new product

line, or even a new domain, manageable

One aspect of product line engineering that has not been covered in this first treatment of

FOOM is the addition of a feature to an existing product family. The expectation is that

101

analysis at the domain level would have to be conducted to determine that any new feature

would in fact be within the family's domain. Following that, rigorous analysis would be

required to determine how the new feature would propogate through the family. The

details of this process would need to be examined in ongoing development of FOOM.

7.3 Conference Feedback

Two papers[37][38] based on the work in this thesis were presented / published in

connection two conferences. Several interesting issues were raised; details of the ensuing

discussions follow.

7.3.1 Tools for FOOM

One line of inquiry revolved around whether a TOOL had been developed specifically for

FOOM. As previously stated, one of the primary objectives of this work was to leverage

existing tools such as Rational Rose, thus short-circuiting the notion of building a

proprietary tool. Nonetheless, tools such as Rose were found to be wanting in their

malleabilty to adapt outside their hardwired views.

Another issue invloved the automated generation of models, designs and code based on

the OCL feature contracts. To date, the author has no knowledge of third-party tools

with this functionality. Maybe commercial vendors will offer such a feature in the future.

102

7.3.2 Architecture Validation

Another question was raised as to whether FOOM validates the generated product

architectures. The initial response was that domain expertise was always required,

meaning that some human interaction is always necessary. Subsequent reflection provided

the same response, however, architects might be able to use objective measures such as

requirements and quality metrics to provide an initial objective indicator.

7.3.3 Non-functional Requirements

Since FOOM has its base in the USP and the UML, non-functional requirements can be

accommodated for a product line in the same manner as is done for single products -

organizational policy, standard practices, etc. A caveat here would be that only

non-functional requirements that apply to all or most of the products in the family be

included in the family's architecture.

7.3.4 Effectiveness of FOOM

There was some interest in whether a control study had been done to compare FOOM to

current methods (or lack of). The first step was to develop FOOM itself, permitting a

control study to determine if it does infact provide the economies it espouses.The SEI has

done some research[36] into the payback timeline for introducing a product line practice:

their results indicate that economies as high as 30% are achievable.

103

7.4 Contr ibutions

Following are the research contibutions of FOOM:

� A feature model has been added to the Unified Software Development Process (USP).

The purpose of the feature model is manifold. Its primary function is to formalize the

relationship between the user's perception of the system and how developers go about

its design and implementation. It also provides a tighter coupling between the analysis

and design segments of the USP. Finally, at the domain and product line levels, it

highlights possibilities for reuse that might not otherwise be evident.

� The complement to the previous item is that the USP has been "bolted" onto FODA.

FODA does not provide detailed processes for the generation of product line and

product architectures.

� A set of processes has been established by extending FODA and the Horseshoe Model

and building on techniques from FAST. These processes assist architects in extracting

an architecture from a single product, examining it in the context of that product's

domain. That architecture is designed to be evolved over time to generate multiple

products and multiple variants of each member of the family.

� FOOM has provided a set of mechanisms for generting products that are based, in

part, on the OCL, an existing precision component of the UML.

104

� FOOM has presented constructs that are suitable for incorporation into a UML profile

for product lines.

7.5 Future Work

As with all research efforts, every last aspect of a problem can't be examined in one try.

There were several areas that would have merited further investigation, but were beyond

this initial treatment. Additional work needs to be carried out that will further integrate

the UML enhancements and the integration of the feature model into the USP. These

include:

� Application of FOOM in another domain - This thesis has applied FOOM in only one

domain - sonar. Modeling a different family of products can further test the original

hypotheses.

� Refine and expand the role of the OCL in FOOM - The OCL has been introduced as a

mechanism for formally specifying individual products. Application generation rules

need to be further studied and expanded. Incorporating the set theory concepts [34]

and decision models [35] could prove useful in this area.

� Developing a profile for software product lines. Profiles provide a way of grouping

UML extensions, such as stereotypes and tagged values, and applying them to a

problem domain [31]. FOOM has introduced a raft of extensions that need to be

further refined and organized so that they may be standardized and put in a form that is

105

incorporated into third-party tools.

� Assess the effect of the coarse granularity in this model - On a first pass, the finer

details of implementation were hidden. Further analysis needs to be done to determine

if the resulting architectures can be markedly improved with an incremental refinement

in detail.

� Investigate the possibility of interfacing FOOM with KobrA - there are many

similarities between the artifacts generated by FOOM and KobrA. An opportunity

may exist for FOOM to provide a greater architecture perspective to KobrA.

� Further use of third party tools - In developing FOOM, a simple modelling version of

a UML CASE tool was used. But several UML tools are also able to generate code.

Using a single tool to both model all architectures in the product and then generate

code for each product could provide additional economies of scale than simply

building models.

106

Bibliography

P. America, W. van der Sterren, Dealing with Evolution in Family
Architectures, Proceedings of 13th European Conference on
Object-Oriented Programming, June 1999

[13]

J. Warmer, A. Kleppe, The Object Constraint Language: Precise Modelling
With UML, Addison Wesley, 1999

[12]

B. Bruegge, A. Dutoit, Object-Oriented Software Engineering: Conquering
Complex and Changing Systems, Prentice Hall, 2000

[11]

J. Bayer, C. Gacek, T. Widen, PuLSE-I: Deriving Instances from a Product
Line Infrastructure, Proceedings of 7th IEEE International Conference and
Workshop on the Engineering of Computer Based Systems, April, 2000

[10]

C. Hofmeister, R. Nord, D. Soni, Applied Software Architecture, Addison
Wesley, 2000

[9]

I. Jacobson, G. Booch, J. Rumbaugh, The Unified Software Development
Process, Addison Wesley, 1999

[8]

I. Jacobson, M. Griss, Patrik Jonsson, Software Reuse: Architecture,
Process and Organization for Business Success, Addison Wesley, 1997

[7]

J. Bergey, L. O’Brien, D. Smith, Mining Existing Assets for Software
Product Lines, Carnegie Mellon Software Engineering Institute, Technical
Note CMU/SEI-2000-TN-008

[6]

R. Kazman, The Architecture Tradeoff Analysis Method, Proceeding of
ICSE'98

[5]

G. Booch, J. Rumbaugh, I. Jacobson, The Unified Modelling Language
User Guide, Addison Wesley, 1999

[4]

K. Kang, et al, FORM: A feature-oriented reuse method with
domain-specific reference architectures, Annals of Software Engineering,
5:143--168, 1998

[3]

P. Clements, L. Northrup, Software Product Lines: Practices and Patterns,
Addison-Wesley, 2002

[2]

David M. Weiss, Chi Tau Robert Lai, Software Product Line Engineering:
A Family-Based Software Development Process, Addison-Wesley, 1999

[1]

107

J. Bayer, D. Muthig, T. Widen, Customizable Domain Analysis, GCSE ’99,
Erfurt, Germany, September 1999

[28]

J. Bayer, C. Gacek, T. Widen, PuLSE-I: Deriving Instances from a Product
Line Infrastructure, Proceedings of 7th IEEE International Conference and
Workshop on the Engineering of Computer Based Systems, April, 2000

[27]

J. Bosch, Design & Use of Software Architectures: Adopting and evolving a
product-line approach, Addison-Wesley, 2000

[26]

J. Bayer, et al, PuLSE: A Methodology to Develop Software Product Lines,
 Proceedings of Symposium on Software Reusability, May 1999

[25]

Bass, Clements, and Kazman. Software Architecture in Practice,
Addison-Wesley, 1997

[24]

L. Bass, et al, Third Product Line Practice Workshop Report, Software
Engineering Institute Technical Report No. CMU/SEI-99-TR-003,
March 1999

[23]

K. Kang, et al, Feature-Oriented Domain Analysis (FODA) Feasibility
Study, Technical Report No. CMU/SEI-90-TR-2, November 1990

[22]

M. Clauss, Modelling Variability with UML, Proceedings of the Young
Researchers Workshop 2001, ISBN = 3-00-008419-3

[21]

Carnegie Mellon Software Engineering Institute, Product Line Analysis,
http://www.sei.cmu.edu/plp/plp_analysis.html

[20]

R. Kazman, S.G. Woods, S.J. Carriere, Requirements for Integrating
Software Architecture and Recovery Models: CORUM II, 1998 Working
Conference on Reverse Engineering.

[19]

F. Brooks, The Mythical Man-Month, Anniversary Edition, Addison Wesley,
1995

[18]

J. Coplien, D. Hoffman, and D. Weiss, Commonality and Variability in
Software Engineering, IEEE Software 15(6), November, 1998

[17]

D. Weiss, Commonality Analysis: A Systematic Process for Defining
Families, Proceedings of ESPRIT ARES Workshop 1998, Springer 1998,
ISBN 3-540-64916-6

[16]

G. Chastek et al, Product Line Analysis: A Practical Introduction, Carnegie
Mellon Software Engineering Institute, Technical Report
CMU/SEI-2001-TR-001

[14]

108

P.J. Tierney, S. Ajila, FOOM - Feature-based object-oriented modeling:
Implementation of a process to extract and extend software product line
architectures, Proceedings of the 8th International Conference on
Information Systems Analysis and Synthesis, International Institute of
Informatics and Systemics, pp. 510-515, Orlando, Florida, July 2002.

[38]

S. Ajila, P.J. Tierney, The FOOM Method – Modelling Software Product
Lines in an Industrial Setting, Proceedings of the 2002 International
Conference on Software Engineering and Practice, Las Vegas, Nevada,
June 2002

[37]

S. Cohen, Predicting When Product Line Investment Pays, Proceedings of
the Second International Workshop on Software Product Lines: Economics,
Architectures, and Implications, Toronto, Canada, May 2001, pp.
IESE-Report. No. 051.01/E

[36]

Z. Stephenson, J. McDermid, Tracing Features With Decision Models,
Proceedings of the Second International Workshop on Software Product
Lines: Economics, Architectures, and Implications, Toronto, Canada, May
2001, pp. IESE-Report. No. 051.01/E

[35]

J.M. Thompson, M.P.E. Heimdahl, Ideas on How Product-Line Engineering
Can be Extended, Proceedings of the Second International Workshop on
Software Product Lines: Economics, Architectures, and Implications,
Toronto, Canada, May 2001, pp. IESE-Report. No. 051.01/E

[34]

H. Gomaa, Modeling Software Product Lines with UML, Proceedings of the
Second International Workshop on Software Product Lines: Economics,
Architectures, and Implications, Toronto, Canada, May 2001, pp. 27--31
IESE-Report. No. 051.01/E

[33]

R.J.A. Buhr, "Use Case Maps as Architectural Entities for Complex
Systems", Transactions on Software Engineering, IEEE, Vol. 24, No. 12,
December 1998, pp. 1131-1155.

[32]

H. Gomaa, Designing Concurrent, Distributed and Real-Time Applications
with UML, Addison-Wesley, 2000

[31]

C. Atkinson, et al, Component-Based Product Line Engineering with UML,
Addison-Wesley, 2002

[30]

C. Atkinson, J. Bayer, D. Muthig, Component-Based Product Line
Development: The KobrA Approach, Fraunhofer Institute for Experimental
Software Engineering

[29]

109

Appendix A

Acronyms

Variable Depth SonarVDS

Unified Software Development ProcessUSP

Unified Modelling LanguageUML

Towed Array SonarTAS

Software Engineering InstituteSEI

Object Oriented Analysis & DesignOOAD

Object OrientedOO

Object Constraint LanguageOCL

Mine Hunting SonarMHS

Hull Mounted SonarHMS

Feature-based Object Oriented ModellingFOOM

Feature Oriented Domain AnalysisFODA

Dogital Signal ProcessorDSP

Command and Control (System) InterfaceCCS

Computer Aided Software EngineeringCASE

110

Appendix B

Hull Mounted Sonar

System Specification

111

Background

The Hull Mounted Sonar (HMS) is an active sonar that is responsible for managing a

transducer (transmitter & receiver) such that data may be collected, processed, and

presented to an operator. This allows the operator to maintain an awareness of the activity

in the marine environment around the transducer. The operator interacts with the sonar

on the ship to which the transducer is attached. The sonar is also connected to other

systems on the same ship, such as the Command & Control System (CCS) and the

underwater telephone (UWT). For configurations where two instances of the sonar may

be operating on the same ship, i.e. one Hull Mounted Sonar, and HMS and one Variable

Depth Sonar (VDS), each instance will co-ordinate its activities -- specifically,

transmission -- with the other.

The sonar is installed onboard ship in physically separated compartments: an operator

space; an equipment space; and a sonar trunk. Cabling is used to connect the elements

together. The operator space houses the operator interface equipment of the sonar and is

shared by the interfaces to other systems; it provides an environment that allows the sonar

operators and ship's staff to co-ordinate the activities of all the systems. The equipment

space is used to house the remaining (bulkier) components of the sonar. The sonar trunk

houses the hull outfit, the part of the system that actually comes into contact with the

water.

112

HMS Behavior Description

Intermingled amongst the documents are descriptions of behaviors that correlate well to

Use Cases. They include operational, maintenance, and training scenarios. This report will

only document the operational use cases. For the purposes of this project, it is felt that the

effect of including the training and maintenance scenarios would be trivial, and only serve

to obscure the primary focus, the operational scenarios.

The operational scenarios that will be considered in this study are:

� Starting up

� Processing passive data (including tracking)

� Processing active data (including tracking)

� Manipulating operational displays

� Adjusting operational parameters

� Controlling operation

� Providing notation

� Pinging

� Monitoring health

� Handling CCS

113

HMS Required Functionality

The system specifications identify activities to be carried out by the Sonar. These

activities are:

� Collect acoustic data

� Generate passive data

� Generate active data

� Save DCS data

� Process passive tracks

� Process active tracks

� Present audio

� Present visuals

� Select presentation

� Set parameters

� Apply control

� Accept notation

� Generate ping

� Monitor health

� Handle CCS

� Handle environment

� Diagnose errors

114

Appendix C

Hull Mounted Sonar

Data Dictionary

115

ProcessedActiveData
Active data that has been processed by the digital signal processor (DSP).

Invariant:
self. DataBlock->size >= 1

ProcessedData
Base-class for data that has been processed by the digital signal processor (DSP).

Invariant: N/A

DisplayReadyAcousticData
ProcessedData that has been formatted for display.

Invariant:
self.DataBlock->size >= 1

DigitizedPassiveData
Container for the result of the analog-to-digital conversion passive output from the
Transducer

Invariant:
self.DataBlock->size >= 1

DigitizedActiveData
Container for the result of the analog-to-digital conversion active output from the
Transducer

Invariant:
self.DataBlock->size >= 1

DigitizedData
Container base-class for the result of the analog-to-digital conversion output from the
Transducer

Invariant:

Entity Classes

Model Element

116

PassiveTrack
An acoustic feature that, at any given moment in time, stands out from the background
ambient noise

Invariant:
self.TimeFirstDetected->size = 1 and
self.TimeLastDetected->size = 1

ActiveTrack
An acoustic feature that has been present in at least three successive "pings".

Invariant:
self.PingFirstDetected->size = 1 and
self.PingLastDetected->size = 1

SonarTrack
Super class for a persisant acoustic feature. In active mode, it has been present in at
least three successive "pings". In passive mode, it is an acoustic feature that, at any
given moment in time, stands out from the background ambient noise

Invariant:
self.Bearing->size = 1 and
self.Intensity->size = 1 and
self.ContactType->size = 1

ProcessingParameters
A data store of transmission parameters for the current ping and ambient environmental
conditions (water temperature, salinity, etc.)

Invariant:
{
 {ShipSpeed >= 0 and ShipSpeed <= SHIP_MAX_SPEED} and
 {ShipHeading >= 0 and ShipHeading < 360} and
 {StartChannel >= 0 and StartChannel < HMS_NUM_CHANNELS} and
 {TxWindow >=1 and TxWindow < HMS_NUM_CHANNELS} and
 {VOSIW >= 1400 and VOSIW <= 1600}
}

ProcessedPassiveData
Passive data that has been processed by the digital signal processor (DSP).

Invariant:
self. DataBlock->size >= 1

117

CcsInterface
The interface between the sonar system and the ship's command and control system

Invariant:
self.IncomingMessageBuffer->size >= 1 and
self.OutgoingMessageBuffer->size >= 1 and
self.IsActive->size = 1

Boundary Classes

PreparedData
Container for data at an intermediate stage of the signal processing

Invariant:
self.PreparedDataBuffer->size = 1

ControlMessage
Container for control messages transferred between the various subsystems in the
Sonar

Invariant:
self.Contents->size = 1

CcsMessage
Container for messages transferred over the CcsInterface

Invariant:
self.Contents->size = 1

TrackDatabase
The list of all Tracks currently known to the system

Invariant:
{
 {self.NumberActiveTracks >= 0 and
 self. NumberActiveTracks <= HMS_MAX_ACTIVE_TRACKS}
 and
 {self.NumberPassiveTracks >= 0 and
 self. NumberPassiveTracks <= HMS_MAX_PASSIVE_TRACKS}
 and
 self.TrackList->size = self.NumberActiveTracks + self.NumberPassiveTracks
}

118

TcpIpSocket
Encapsulation of the TcpIp sockets.

Invariant:
self.FileDescriptor > -1 and
self.FileDescriptor <= MAX_FILE_DESCRIPTOR_VALUE

TransducerController
Interface to the transducer (the device that coverts analog acoustic energy into a digital
signal). Used in both active and passive detection.

Invariant:
self.RxFrequency->size = 1
self.RxMode->size = 1

TransmitterController
Interface to the acoustic energy transmitter. It is only used during active detection.

Invariant:
{
 {TxStartChannel >= 0 and
 TxStartChannel < HMS_MAX_CHANNELS}
 and
 {TxNumberChannels >= 1 and
 TxNumberChannels < HMS_MAX_CHANNELS}
 and
 {TxType = TXTYPE_CW or
 TxType = TXTYPE_FM}
}

ConsoleInputDevice
A base class for the operator console input devices (keyboard, joystick, trackball)

Invariant:
self.DeviceType->size = 1 and
self.DeviceType = INPUTDEVICE_KEYBOARD or
self.DeviceType = INPUTDEVICE_TRACKBALL or
self.DeviceType = INPUTDEVICE_JOYSTICK

119

UpdateTracks
Add / remove / update the tracks in the track database

Invariant:

SetPassiveMode
Put the system and its subsystems in passive detection mode

Invariant:

SetActiveMode
Put the system and its subsystems in active detection mode

Invariant:

ProcessCcsMessage
Receive incoming message from ship and process or Prepare a message and send to the
ship's command and control system

Invariant:

ActiveDetection
One of the primary detection modes of sonar, using transmitted acoustic energy
(pinging) to assist in the detection of underwater objects

Invariant:

PassiveDetection
Detect sources of underwater acoustic energy by listening only

Invariant:

InitializeSystem
Take the entire system from a powered-down state to the default passive detection
mode. Includes powering up and initialization of all subsystems: transmitter /
transducer, DSP, sonar controller and operator console

Invariant:

Control Classes

120

TrackProcessor
Module that analyzes incoming acoustic data looking for potential features. Maintain
and update the history of features detected

Invariant:
self.ProcessedDataBuffer->size >= 1

SonarController
The subsystem that controls the behavior of the sonar. It also monitors the status of
the subsystems

Invariant:
{
 {self.SystemMode = DEFAULT_MODE or
 self. SystemMode = SYSTEMMODE_ACTIVE or
 self. SystemMode = SYSTEMMODE_PASSIVE
 } and
 self.HmsProcessedData->size >= 1 and
 self.HmsPostProcessor->size = 1 and
 self.HmsDisplayReadyData->size >= 1 and
 self.HmsTrackProcessor->size >= 1 and
 self.HmsTrackDatabase->size = 1 and
 self. HmsCcsInterface->size = 1 and
 self. IncomingCcsMsgBuffer->size >= 1 and
 self. OutgoingCcsMsgBuffer->size >= 1
}

DigitalSignalProcessor
The subsystem that converts the raw digitized data into features using digital filters and
frequency-domain transformations

Invariant:
self.UnpackedDataBuffer->size = 1 and
self.PreparedActiveDataBuffer->size >= 1 and
self.PreparedPassiveDataBuffer->size >= 1 and
self.DataPreparationModule->size = 1 and
self.PassiveDataDspModule->size = 1 and
self.ProcessedPassiveDataBuffer->size >= 1 and
self.ActiveDataDspModule->size = 1 and
self.ProcessedActiveDataBuffer->size >= 1

121

ActiveDataProcessor
Module to perform passive processing in the DSP

Invariant:
self.InputBuffer->size = 1
self.OutputBuffer->size = 1

PassiveDataProcessor
Module to perform passive processing in the DSP

Invariant:
self.InputBuffer->size = 1
self.OutputBuffer->size = 1

DataPreparationProcessor
Unpacks raw digitized data and prepares it for further processing

Invariant:
self.UnpackedDataBlock->size = 1 and
self.ProcessedDataBlock->size = 1

OperatorConsole
The man-machine-interface for acquiring operator input and displaying information to
operator

Invariant:
self. SystemMode->size = 1 and
self.ControlMessageBuffer->size >= 1 and
self.CurrentDisplayFormat->size = 1 and
self.IncomingCcsMessageBuffer->size >= 1 and
self.OutgoingCcsMessageBuffer->size >= 1 and
self.IncomingControlMessageBuffer->size >= 1 and
self.OutgoingControlMessageBuffer->size >= 1 and
self.Display->size = 1 and
self.Keyboard->size = 1 and
self.TrackBall->size = 1 and
self.Joystick->size = 1

122

A buffer to contain control messages. The size
will be influenced by the real-time behavior of
the system.

ControlMessageBuffer

The number of stave channels in the
transmission window

TxNumberOfChannels

The first stave channel in the transmission
window

TxStartChannel
The type of transmission (CW or FM)TxType
The operating frequency of the transmitterTxFrequency

Enum defining the type of operator console
input device

DeviceType

Structure containing the results of the data
preparation module in the DSP

PreparedDataBuffer

A structure containing the contents of a CCS
message

Contents
The collection of tracksTrackList
The number of passive tracks currently storedNumberPassiveTracks
The number of active tracks currently storedNumberActiveTracks
The time a passive track was last detectedTimeLastDetected
The time a passive track was first detectedTimeFirstDetected

Most recent ping number when the target was
detected

LastPingDetected
Ping number when the target was first detectedFirstPingDetected
Distance to target at the time of the last pingRange
Identification of the type of contactContactType
The strength of the contactIntensity
Relative bearing of the track to the shipBearing

Velocity Of Sound In Water - calculated as a
function of environmental factors, including
temperature, salinity, depth, etc.

VOSIW

The number of staves in the transmission
window

TxWindow

The first stave-channel in the transmission
window

StartChannel
The True heading of the shipShipHeading
The speed of the ship in knotsShipSpeed

A structure containing the various components
of an <<entity>> object

DataBlock

Attributes

123

DataPreparationProcessorDestinationDataBlock :
PreparedData*

DataPreparationProcessorUnpackedDataBlock
Joystick interfaceJoystick
Trackball interfaceTrackBall
Keyboard interfaceKeyboard
Base class for console input devicesConsoleInputDevice
Video display interfaceDisplay

Collection of outgoing CCS messages. Size will
be a function of the real-time behavior of the
system

OutgoingCcsMessageBuffer

Collection of incoming CCS messages. Size will
be a function of the real-time behavior of the
system

IncomingCcsMessageBuffer

The display format currently active on the
Operator Console

CurrentDisplayFormat
Base class for processed dataProcessedDataBuffer
Collection of SonarTracks HmsTrackDatabase

Module to analyze acoustic data - tracks are
added, updated or deleted.

HmsTrackProcessor

Acoustic data formatted for display on the
Operator Console

HmsDisplayReadyData

Module to perform additional processing on the
DSP output

HmsPostProcessor
Intermediate storage for processed dataHmsProcessedData
The mode of the system - active or passiveSystemMode
Intermediate storage buffer for ??? data in DSPProcessedActiveDataBuffer

DSP software module to perform passive
processing

ActiveDataDspModule
Intermediate storage buffer for ??? data in DSPProcessedPassiveDataBuffer

DSP software module to perform passive
processing

PassiveDataDspModule

Software module to prepare raw acoustic data
for the DSP

DataPreparationModule
Intermediate storage buffer for ??? data in DSPPreparedPassiveDataBuffer
Intermediate storage buffer for ??? data in DSPPreparedActiveDataBuffer

Intermediate storage buffer for unpacked data in
DSP

UnpackedDataBuffer

Processing mode of the DSP - active or passiveProcessingMode
Transmission mode - CW or FMRxMode

The frequency at which the transducer should
listen. In active mode, it will be the same as
TxFrequency

RxFrequency

124

ActiveDataProcessorOutputBuffer :
ProcessedActiveData

ActiveDataProcessorInputBuffer : PreparedData

PassiveDataProcessorOutputBuffer :
ProcessedPassiveData

PassiveDataProcessorInputBuffer : PreparedData

TrackDatabase::DeleteTrack (SonarTrack* track) : bool
Remove a track from the track database
not.TrackDatabase->includes(track)

TrackDatabase::UpdateTrack (SonarTrack* track, struct trackinfo) : bool
Update a track's contents.
post: TrackDatabase.track->Contents = trackinfo

TrackDatabase::AddPassiveTrack (SonarTrack* track) : bool
Add a passive track to the track database
post: TrackDatabase->includes(track)

TrackDatabase::AddActiveTrack(SonarTrack* track) : bool
Add an active track to the track database
post: TrackDatabase->includes(track)

TrackProcessor::UpdateTracks() : void
Update TreackDatabase as required.

TrackProcessor::ProcessAcousticFeatureData() : void
Analyze DSP processed data for features.

PostProcessor::PerformPostProcessing() : void
Perform post-processing on DSP output if required for current display format.

VideoDisplay::PresentVisuals() : void
Display acoustic features, tracks, and other information on the console display.

ConsoleInputDevice::AcquireInput()
Capture input from a console device and forward for processing

125

DataPreparationProcessor::PrepareData() : void
Prepare unpacked data for DSP.

DataPreparationProcessor::UnpackRawData() : void
Unpack incoming data from transducer.

ProcessingParameters::GetParameters(int Parameter, void ParameterValue) : void
Retrieve the value of the specified parameter.

ProcessingParameters::UpdateParameters(int Parameter, void ParameterValue) : void
Update the value of the specified parameter.
post: ProcessingParameters.Parameter = ParameterValue

HmsOperatorConsole::ProcessControlMessages() : bool
Parse incoming control messages and execute requested action

HmsOperatorConsole::SetDisplayFormat(enum displayformat) : bool
Configure the operator console display for the requested format.
post: OperatorConsole.CurrentDisplayFormat = displayformat

HmsOperatorConsole::ProcessOperatorInput() : void
Determine action required by operator request, then execute.

TcpIpSocket::send(int FileDescriptor, char* Buffer, int BufferSize) : int
Send data on the socket.
post: TcpIpSocket.BytesSent = BufferSize

TcpIpSocket::recv(int FileDescriptor, char* Buffer, int BufferSize) : int
Receive data on the socket.
post: TcpIpSocket.BytesReceived = BufferSize

CcsInterface::SendCcsMessage() : int
Send messages to the ship.

CcsInterface::ProcessCcsMessage() : void
Process messages from the ship.

CcsInterface::ReceiveCcsMessage() : int
Receive messages from the ship.

CcsInterface::Initialize() : bool
Initialize the Command and Control interface.
post: CcsInterface.IsActive()

126

HmsSonarController::ReceiveOperatorControlMsg() : bool

HmsDigitalSignalProcessor::SendProcessedData() : void
Send processed data to sonar controller.
post: ProcessedDataSocket.BytesSent = ProcessedDataSocket.BufferSize

HmsDigitalSignalProcessor::ProcessPassiveData() : void
Call the passive data processor.

HmsDigitalSignalProcessor::ProcessActiveData() : void
Call the active data processor.

HmsDigitalSignalProcessor::PrepareRawData() : void
Call the DataPreparationProcessor to unpack prepare the raw data

HmsDigitalSignalProcessor::SetConfiguration(enum Configuration) : bool
Set the DSP's configuration - active or passive processing.
post: HmsDigitalSignalProcessor.ProcessingMode = Configuration

HmsDigitalSignalProcessor::Initialize() : bool
Initialize the DSP.

HmsTransmitterController::SetTransmissionParameters(enum Parameter, void
ParameterValue) : bool
Update the requested parameter's value.
post: HmsTransmitterController.Parameter = ParameterValue

HmsTransmitterController::InitiatePing() : bool
Transmit acousting energy into marine environment ("ping").

HmsTransmitterController::Initialize() : bool
Initialize transmitter.

[self.TxFre quency = TXFREQ_DEFAULT and
 self.TxType = TXTYPE_DEFAULT and
 self.TxSta rtC hannel >= 0 and
 self.TxSta rtChannel < MAX_ CHANNELS and
 self.TxNumberChannels > 0 and
 self.TxNum berOfChannels < MAX_CHANNELS]

PassiveDataProcessor::ProcessPassiveData() : void
Apply DSP algorithms to incoming passive data.

ActiveDataProcessor::ProcessActiveData() : void
Apply DSP algorithms to incoming active data.

127

HmsTransducerController::SendRawAcousticData() : bool
Send data from transducer to DSP.

HmsTransducerController::Listen() : void
Acquire acoustic signals from the marine environment.

HmsTransducerController::SetConfiguration(enum Configuration) : bool
(Re-)Configure the transducer.
post: HmsTransducerController.RxMode = Configuration

HmsTransducerController::Initialize() : bool
Initialize the transducer.
post: HmsTransducerController.RxMode = RXMODE_PASSIVE

HmsSonarController::UpdateTrackDatabase() : bool
Update the track database to account for newly processed data.

HmsSonarController::ReceiveTransducerControlMsg() : bool
Receive control messages from the transducer.

HmsSonarController::SendTransducerControlMsg() : bool
Send control messages to transducer.

HmsSonarController::ReceiveTransmitterControlMsg() : bool
Receive control messages from the transmitter.

HmsSonarController::SendTransmitterControlMsg() : bool
Send control messages to the transmitter

HmsSonarController::SendDisplayReadyData() : bool
Send data to operator console for display.

HmsSonarController::ReceiveProcessedData() : bool
Receive data from the DSP

HmsSonarController::SetSystemMode(int Mode) : bool
Configure the system for the selected mode.
post: SystemMode = Mode

HmsSonarController::ProcessOperatorCommand() : bool
Process operator commands.

Receive control messages from the OperatorConsole.

128

129

