
Diary Entry
Link to SCIS website: http://student.athabascau.ca/~matsph/

Work for this Unit:
Activities:

 Scimmed the Unit 4 and 5 JavaScript FAQ

 Watched LearnWebCode’s Sticky Navigation Tutorial:
https://www.youtube.com/watch?v=dZYy72ObKf0&index=43&list=PLr6-
GrHUlVf8JIgLcu3sHigvQjTw_aC9C

 Watched tutor4u’s JavaScript & jQuery Tutorial for Beginners – 1 of 9:
https://www.youtube.com/watch?v=VRnQOcVclS8

 Added the JavaScript ‘floater.js’ to the website.

 Changed some of the CSS to position the navigation field properly when it changes positioning.

How I have met the Learning Outcomes:

 Critique JavaScript code written by others, identifying examples of both good
and bad practice.

 This is the original javascript code written by LearnWebCode in the Sticky Navigation
Tutorial video with the link above:

jQuery(document).ready(function() {

 var navOffset = jQuery("nav").offset().top;

 jQuery("nav").wrap('<div class="nav-placeholder"></div>');
 jQuery(".nav-placeholder").height(jQuery("nav").outerHeight());

 jQuery("nav").wrapInner('<div class="nav-inner"></div>');
 jQuery(".nav-inner").wrapInner('<div class="nav-inner-most"></div>');

 jQuery(window).scroll(function() {
 var scrollPos = jQuery(window).scrollTop();

 if (scrollPos >= navOffset) {
 jQuery("nav").addClass("fixed");
 } else {
 jQuery("nav").removeClass("fixed");
 }

 });

});

Explanation:

https://www.youtube.com/watch?v=dZYy72ObKf0&index=43&list=PLr6-GrHUlVf8JIgLcu3sHigvQjTw_aC9C
https://www.youtube.com/watch?v=dZYy72ObKf0&index=43&list=PLr6-GrHUlVf8JIgLcu3sHigvQjTw_aC9C
https://www.youtube.com/watch?v=VRnQOcVclS8

The “ready(function()” function is run when the page is loaded, and it retrieves the y position of
the top of the ‘nav’ field. Then, it wraps the ‘nav’ field in a “nav-placeholder” wrapper, to use
the “nav-placeholder” to act as a husk to be left over after the ‘nav’ is converted into a fixed
field. It then makes an inner-wrapper inside the ‘nav’ field to have different CSS for the outer
area and the inner area, and then another inner-wrapper to have even more differentiation
between the outer and inner areas for CSS.
The “scroll(function()” function is run every time the user scrolls, and every time it retrieves the
y position of the top of the viewport, and then it compares it to the y position of the top of the
‘nav’ field to determine if it makes the ‘nav’ field fixed or not.
Critique:

Good practice:
 The code is properly indented and has consistent style
 Variables use camelCase
 Each line doesn’t exceed 80 characters
 Uses proper if statement form
Bad practice:
 The code has no comments, but these can be inferred from the tutorial video
 Blank spaces don’t follow the function keywords
 Certain ‘=’ operators are not separated from their operands
 Variables are not declared before use

 Use JavaScript to add dynamic content to pages.

The JavaScript above changes the position property of the ‘nav’ element, which is a construction
change in the DOM caused by the user.
 Modify existing JavaScript code to extend and alter its functionality and, where
appropriate, to correct errors and cases of poor practice.

First, I corrected all of the bad practice problems listed above:

jQuery(document).ready(function () {
 //Variable declarations:
 var navOffset; //Holds the y position of the nav field
 var scrollPos; //Holds the y position of the top of the viewport

 //Retrieve the y position of the top of the nav field
 navOffset = jQuery("nav").offset().top;

 /*
 * Wraps the nav in a wrapper, so that when the nav is transformed into a
 * fixed nav, the rest of the page doesn't adjust to it being gone
 */
 jQuery("nav").wrap('<div class="nav-placeholder"></div>');

 //Set the height of the wrapper to the same height of the nav section
 jQuery(".nav-placeholder").height(jQuery("nav").outerHeight());

 /*
 * Wraps the fixed floating navigation inside the nav-inner class, so it can
 * be edited by CSS separately from the nav container
 */
 jQuery("nav").wrapInner('<div class = "nav-inner"></div>');

 /*
 * Wraps inside the nav-inner with another wrappeing of nav-inner-most,
 * so that it again can be edited by CSS separately
 */
 jQuery(".nav-inner").wrapInner('<div class = "nav-inner-most"></div>');

 //Runs every time the page is scrolled
 jQuery(window).scroll(function () {
 //Y pos of current scrolling position
 scrollPos = jQuery(window).scrollTop();

 //Changes the fixed state of the nav if it is above the scrollPos
 if (scrollPos >= navOffset) {
 jQuery("nav").addClass("fixed");
 } else {
 jQuery("nav").removeClass("fixed");
 }

 });

});

Then, I removed some unneeded statements, such as the ‘nav’ wrappers. I also changed the point
at which the position type is changed to fixed (navOffset-10, to give some padding from the top):
jQuery(document).ready(function () {
 //Variable declarations:
 var navOffset; //Holds the y position of the nav field
 var scrollPos; //Holds the y position of the top of the viewport

 //Retrieve the y position of the top of the nav field
 navOffset = jQuery("nav").offset().top;

 //Runs every time the page is scrolled
 jQuery(window).scroll(function () {
 //Y pos of current scrolling position
 scrollPos = jQuery(window).scrollTop();

 //Changes the fixed state of the nav if it is above the scrollPos
 if (scrollPos >= navOffset - 10) {//-10 because it floats 10px
from top
 jQuery("nav").addClass("fixed");
 } else {
 jQuery("nav").removeClass("fixed");
 }

 });

});

Other Requirements

explain how the code improves the experience of the personas you created in Unit
1

Persona 1: Saun Simmerling

 Scenario 2: Interesting Facts about the Rubik's Cube

 Now that the navigation is only fixed after the user scrolls down the page below
its sitting position, it won’t be in his way when he navigates through the main pages.

Persona 2: Janice Miranda

 Scenario 5: The 5*5*5

 Now that the navigation is working properly, it won’t be distracting, and she can
see that it is meant to be an index of the different categories, as it sits next to the most popular
puzzles. This should help her find what interests her easier.

Persona 3: Saun Simmerling

 Scenario 6: Buying a new puzzle

 The categories navigation is now properly situated for Robert to see in relation to
the rest of the page, and feel comfortable using it as a navigation guide.

Notes:
Went well:

The modification of the JavaScript went the best, as I knew what needed to be changed according to the
notes on JavaScript code conventions, and I knew what every line of code did, so I was able to remove
lines that were useless to me.

Didn’t go well:

Getting the JavaScript code to work on my website, as I needed to reference a JQuery library in order to
have the website use the code properly. I ended up having to use a library, even though that is supposed
to be covered in a later unit.

What was most difficult and why:

 Relating the changes to the Unit 1 personas, scenarios, and site-map. It is only a simple feature,
that doesn’t directly help or is crucial to any scenario, so I had to find out how it helped the scenarios
indirectly.

If done again, would it be done differently and why:

I would have chosen to add code that adds YouTube player widgets, since they are a more direct help to
the Unit 1 personas and scenarios, and the code would be much more uniform in structure, and
probably easier to find.

How did previous experience help/hinder completing the tasks:

Previous experience with using C++, Java, and Ruby programming languages helped me understand the
JavaScript code, as it had the same structure and logic inherent in all of those languages.

Most surprising thing learned:

JavaScript can use libraries, and they can be imported directly from another website.

Most useful thing learned:

JavaScript works mostly by changing the DOM, and can add, remove, or change HTML fields.

Map to Course Outcomes
In the original site mock-up, the ‘Other_Puzzles.png’ has a categories box that was supposed to
sit on the left side and follow the user as they scrolled down the page. The JavaScript code added
accomplishes that, so that now the categories box isn’t just in a fixed position, but it sits next to
the top of the ‘Most Popular’ puzzle list until the user scrolls below the top of the navigation
box.

Self-assessment:

Learning Outcome
Evidence of Meeting the

Learning Outcome

Your Own Assessment of
the Grade You Believe
Would Be Appropriate

Tutor’s Justification of
Grading (optional)

Apply a structured
approach to identifying
needs, interests, and
functionality of a
website.

 I have made 7
scenarios that give
structured processes of
how the anticipated
audience will address
their needs with the
website. I also took into
account the constraints
users might have, such
as different operating
systems, slow
computers, and
browsing the site using
mobile devices.

B

Design dynamic websites
that meet specified
needs and interests.

 A, B, C, D

Write well-structured,
easily maintained,
standards-compliant,
accessible HTML code.

 Sample1.html and
Sample2.html are
edited to show my
ability to write
standards-compliant
and structured HTML.
The errors that used to
exist in the code are
listed in the learning
diary under the section
“Other Requirements”.
The 11 pages I wrote
for my website all have
links easily clickable
on a mobile device, and
are all well-structured
and standards-
compliant.

B

Write well-structured,
easily maintained,
standards-compliant CSS
code to present HTML
pages in different ways.

 The CSS I wrote is
either in the external
CSS file, or in a one-
time internal CSS in the
‘other_puzzles.html’
page. In both, the code
is organized with
comments and well-
structured using proper
spacing, character case,
property ordering, and
naming schemes.
It is easily maintained
as the external CSS file
is less than 130 lines
long, and the internal
CSS only defines
styling for one selector.
It is standards
compliant with WCAG
2.0 by having no
obscure or hard to read
text, and proper
contrast.

A, B, C, D

Use JavaScript to add
dynamic content to
pages.

 I have added the
JavaScript file ‘floater.js’
which dynamically
changes the positioning
of the navigation field
depending on where the
user’s viewport is.

B

Critique JavaScript code
written by others,
identifying examples of
both good and bad
practice.

 A, B, C, D

Select appropriate HTML,
CSS, and JavaScript code
from public repositories
of open source and free
scripts that improves
your site and that
enhances the experience
of site visitors.

 A, B, C, D

Modify existing HTML,
CSS, and JavaScript code
to extend and alter its
functionality, and to
correct errors and cases
of poor practice.

 A, B, C, D

Write well-structured,
easily maintained
JavaScript code following
accepted good practice,
including

 A, B, C, D

• general appearance
and form:
commented, properly
laid out, appropriate
capitalization

 A, B, C, D

• structure: modular,
using functions and
objects effectively

 A, B, C, D

• standards-compliant A, B, C, D

• accessible A, B, C, D

Write JavaScript code
that works in all major
browsers (including IE,
Mozilla-based browsers
such as Firefox, Opera,
Konqueror, Safari,
Chrome).

 A, B, C, D

Effectively debug
JavaScript code, making
use of good practice and
debugging tools.

 A, B, C, D

Use JavaScript libraries
(e.g., JQuery) to create
dynamic pages.

 A, B, C, D

Use JavaScript to access
and use web services for
dynamic content (AJAX,
JSON, etc.).

 A, B, C, D

Overall A, B, C, D

DOM Notes
DOM: Document Object Model

Javascript employes the DOM to describe the page as a hierarchy tree of branches and leaves.

 Uses tags and attributes to make hierarchy tree.

Document: The DOM

Window: The displayed page

Other Javascript Notes
Javascript is read by a program, rather an interpreter or a compiler.

 Some versions semi-compile it (to a faster format, but not machine code), or remove comments

JavaScript Code conventions
The keyword function is always followed by one space

All binary operators besides ‘.’, ‘(‘, and ‘[‘ Should be separated from their operands by a space

Every ‘,’ should be followed by a space or line break

Each semicolon should be followed by a line break, except in for statements, which are separated by a
space

All variables should be declared before use

	Diary entry
	Map to Course Outcomes
	Notes

