
Diary Entry
Link to SCIS website: http://student.athabascau.ca/~matsph/

Work for this Unit:
Pre-coding Activities:

 Skimmed the Unit 4 and 5 JavaScript FAQ

Step 1: Choosing the project

Ideas:

1. Sorting and filter tools on the special patterns, brand versions, and other puzzles pages.
On each page that lists items in a table, Javascript will reference a dataset (maybe in a separate
file), sort through them according to the sort selected by the user (either from a drop-down
menu or buttons on top of columns), and only show items that are in the category/have the tag
that the user has selected (either in a navigation field, or a drop-down menu).

• This would help Janice and Robert to search for special patterns and puzzles by giving
them ways to specify what they are looking for.

2. Drop-down menus for each of the main page buttons with sub-pages/categories.
The ‘Special Patterns’ menu button will have drop-down buttons for beginner, advanced, and
other methods.
The ‘Solving Records’ menu button will have drop-down buttons for Worldwide and U.S. results.
The ‘Other Puzzles’ menu button will have drop-down buttons for Cuboids, Shape Shifting,
Rubik’s Cube Design, and Other.

• This would help Sean to look through each of the main pages of the site and access the
beginner methods directly, and would help Robert to go to the advanced solving
methods from the home page, without having to click on the ‘Solving Methods’ link first.

3. Color/theme change option for website. A settings icon can be clicked to show radio buttons,
icon buttons, and drop-down menus that can change settings like background-color,
foreground-color, enable/disable images, theme, and font.

• This would improve the browsing enjoyability of Janice, who personally likes exploring
different options and enjoys customizing things.

• Sean could change the color or theme to his liking, to make browsing the site more
attractive to him, so he can more easily take up an interest in cubing.

All of my ideas were approved, and I decided to do option number 1, sorting and filter tools on the
special patterns, brand versions, and other puzzles pages.

Step 2: Designing the program

After having my ideas approved, I needed to make a design document and submit it. But in order to
know how my JavaScript is to be structured, I thought it would be easier to write it first, make a
structure based on the JavaScript I wrote, submit the structure design document, and make any changes
to the code according to what the tutor says, and then submit the code.

For the design, I have created a list of the classes, functions, and variables to be used in the program, as
well as the requirements of the program, and a flow chart. I have attached the design in the pdf
document “Program Design.pdf”.

Step 3: Coding

Other unrelated HTML changes: I changed the 3 videos in the index page to embedded YouTube video
objects and removed the comment that said “These YouTube videos will be video boxes when javascript
is used”.

First, in order to have something to sort with, I added extra items in each of the lists within the HTML. I
also added a category field in each of the puzzles’ descriptions since I was going to use it to filter the
puzzles by category.

Then, I looked for videos and tutorials on how to sort with JavaScript. I searched on YouTube “JavaScript
sort table”, “JavaScript ascending order”, “JavaScript filter items”, “JavaScript array filter method”, and
“html sort table JavaScript”. None of the videos I found showed how to sort a table like I have seen done
on shopping sites like Newegg and Amazon. So I decided to make up a system entirely on my own,
making up structures as I think of them.

I decided that in order to sort the list, I need to take the data from the HTML and put it into an array
which I can read and sort in the JavaScript. So I set up an array, and made a ‘for’ loop to iterate each row
of the array.

Throughout the programming, I often looked up on stack overflow or W3Schools methods of sorting
arrays, pulling information from the DOM, or executing JavaScript code from HTML tags.

I then realized that I didn’t know how to find the amount of rows in the table, or how to retrieve them in
order to put them in the array; so I used the Java2 reference:

<http://www.java2s.com/Tutorials/Javascript/Buildin_Object/index.htm>

Then I ran a simple script that was supposed to grab every element with tag name “tr”, and iterate
through them replacing them with a number. I ran the JavaScript file for the first time, and it didn’t
work, so I thought it was because the JavaScript was loaded in the header, before the body of the DOM
had time to load. So I put all the code in a function, and set the “window.onload” to the function. And it
worked!

So now came the most difficult part, which was sorting the array. I found out that JavaScript had a
‘sort()’ function that allowed you to send it a custom function as a parameter, so I decided to use it, as it
seemed to be the easiest way to re-order the table. I tried to use a custom function sort, but it didn’t
seem to work. I replaced all the rows with numbers and tried to sort, and it still didn’t work. There were
no errors, but it still didn’t re-order the rows, even if their innerHTML was just a number.

http://www.java2s.com/Tutorials/Javascript/Buildin_Object/index.htm

I figured out the reason for this was that when the array was resorted, it just moved around the
references to the rows, it didn’t actually move the rows. That’s when I thought I would need to copy the
entire table into a new array in the new order, and then copy the array back onto the DOM.

But before I did this, I changed the code to first get references to all the rows grouped in 2, so that each
item in the array referenced 2 rows. I did this by making the array a 2D array, of size
[numberOfRows/2][2].

I then created my first custom function sort, an alphabetical sort. I set it up to sort the array by the title
in the first cell of the first row, copied this reordered array into a new array, and overwrote the DOM
with the new array.

After I did this, the JS code wouldn’t run, and I didn’t know why, so I ran the debugger in Firefox to check
why it didn’t work. I found out that I didn’t initialize my 2D array properly, so I looked up “JavaScript 2D
array”, found out I needed to loop through and create a new 1D array in each item in the 1D array. So I
did, that, and the table was now sorted alphabetically by title!

Now that I had a way to sort it, I needed a way to have the user choose the way to sort it. So I used an
online reference guide (http://www.java2s.com/Tutorials/Javascript/Buildin_Object/index.htm>) to
know how to use an HTML drop-down menu item. I found out what I was looking for was called the
‘select’ tag, and I learned how to execute a JavaScript command when an option is selected. I then
created a select box in the HTML of the other puzzles page within the navigation menu, and had it run
the sort function when the alphabetical option was chosen.

Then, in order to add other sorting options, I restructured the code to run the sorter, but added a switch
statement to change the sorting function according to what the user wanted to sort by. I then added a
sort for difficulty and rating.

I then worked on a filter system that would filter out categories according to what the user checks or
unchecks. I first set up a backup system in an initialization function to restore any table rows that are
deleted when filtering, but then I changed my mind and thought to setting the display to none for each
row that was to be filtered out was a better idea.

But then I got into a big problem of not being able to specify a check box by ID within a form specified by
ID, which would require chaining ‘getElementById’s, which is not allowed. So I instead gave each box its
own ID, and referenced each using ‘document.getElementById()’.

The filter function for the form boxes was very simple, and was largely based off of the sort function I
already made. I had a few problems returning the display mode for the rows to the default, since I didn’t
know that the default display for row elements was ‘table-row’.

After getting the form boxes to work, I fixed the select options to have the default option of ‘Sort by:’,
and have it reset to that option after a page refresh by adding ‘autocomplete=”off”’ to the select tag. I
also fixed the form boxes so that all are checked by default.

After I was finished with the ‘other_puzzles.html’ page, I added the JavaScript and sort options to the
‘special_patterns.html” page, but only added the alphabetical and difficulty sorts. This was simple and
straightforward, except I had to reformat the special patterns page to include a navigation bar like in the
other puzzles page, which required a little restructuring.

How I have met the Learning Outcomes:

Write well-structured, easily maintained JavaScript code following accepted good
practice, including

• General appearance and form: well-commented, properly laid out, appropriate
capitalization.

• Structure: modular, using functions, classes and objects effectively, making
effective use of variables.

• Standards-compliant: avoiding proprietary elements where possible and
working with the vast majority of web browsers.

• Accessible: usable in some form by people with a wide range of disabilities or,
if not, failing gracefully and offering alternatives to achieve similar
functionality.

General appearance and form and Structure:

 Using my Unit 4 notes on JavaScript code conventions as well as the HTML comments section
of my Unit 2 notes, I added comments and structured the code to fit the code conventions and
give it good form.

 I also used 2 functions, 1 custom function, and 29 variables in the ‘sorter.js’ program code.

Standards-compliant:

 I tested the sorting and filter elements on Firefox, Opera, Internet Explorer, and Chrome
browsers. I also ensured that the new HTML code and JavaScript were compliant with the
XHTML 1.0 strict standards and the WCAG 2.0 standards.

Accessible:

 The website should have an ‘A’ rating by the WCAG 2.0 standards for the most part, and the
new changes to the website have also been tested on an Android device.

Make effective and efficient use of a full range of programming constructs
including sequence, selection and iteration.

The following programming constructs were used:

Integer, String, Decimal, Reference, and Array Variables

Functions, built-in methods, and custom functions

Switch statements, for loops, and if/else statements

Effectively use variables, including passed parameters, local and global variables
and arrays, to improve the efficiency, re-use, and maintainability of the code.

The sortKind() custom functions have 2 passed parameters, one for each element of an array.

About 29 different variables were used in the program, holding many different types of data,
including:

DOM element references

Integers

Custom functions

HTML

Boolean values

Use a wide range of programming features and commands to improve the
efficiency, re-use and maintainability of the code.

The following built-in JavaScript functions and methods were used:

 document.getElementById() – To retrieve DOM elements

 element methods/properties:

 selectedIndex – To get selected option of <select> element

 children – To sort through the children of an element

 value – Grab the value of a <select> <option>

 innerHTML – To copy the HTML from inside an element

 checked – To get the checked/unchecked status of checkboxes

 length – To get the number of row elements in a document

 style.display – Change the display property of a row element

 getElementsByTagName() – To select row elements

 slice() – For dissecting a piece of data from an item description

 indexOf() – To search for the location of a piece of data from an item description

 trim() – To make text uniform to be used in a switch statement

 toLowerCase() – To make text uniform to be used in a switch statement

 Array() – To create a set of 1D arrays in another 1D array to make up a 2D array

Write JavaScript code that works in all major browsers (including IE, Mozilla-
based browsers such as Firefox, Opera, Konqueror, Safari, Chrome).

I wrote about 300 lines of JavaScript code that I tested in the Firefox, Chrome, and Opera
browsers.

Effectively debug JavaScript code, making use of good practice and debugging
tools.

I used the built-in Firefox debugger, by going line-by-line through code until it reported an error,
which I read and researched to find where my code had a bug. I used the breakpoint feature to
stop the execution of the code at the point where I wanted to see the execution in detail. I also
kept track of the variables in the function scope in the variables tab on the right side of the
debugger.

Other Requirements

Explain in detail how the code improves the experience of the personas you created
in Unit 1

Persona 2: Janice Miranda

 Scenario 1: Finding special Rubik’s Cube patterns

 Now that there is a navigation that allows sorting by title and difficulty, Janice
can sort alphabetically to find a pattern she knows the name of, and by difficulty if she wants to
learn a pattern that is more easy or especially difficult.

 Scenario 5: The 5*5*5

 The new sorting and filter options allows Janice to choose categories that interest
her and filter out ones that don’t, and sort the puzzles by what quality she thinks will give her
more interesting puzzles.

 Scenario 7: Solving away from home

 Now that the special patterns allow alphabetical sort, she can search through the
puzzles alphabetically instead of having to browse through them one by one.

Persona 3: Robert Connelly

 Scenario 6: Buying a new puzzle

 Robert can now filter the puzzles according to the categories he likes, and sort
them to give puzzles according to difficulty or rating to give him puzzles that are either hard or
with a good rating, which probably means that he will find cool.

Notes:
Went well:

The copying of the code from the alphabetical sort function and modifying it for the rating and difficulty
sort functions. This part developed the most functionality with the least effort, as I already had all the
bugs fixed in the alphabetical sort, all I had to do was make some changes to sort it differently, and it
was easy and quick.

Didn’t go well:

Getting and copying the elements from the DOM, as the JavaScript methods such as ‘getElementId’
would sometimes work and sometimes not, depending on which element or variable I was using it on. In
some instances I had no idea why it wouldn’t work, and so I just used a different method entirely.

What was most difficult and why:

Re-ordering the table according to the ‘sort()’ function. This was the most difficult because I had to get a
list of all the rows, read their title to use it to sort with, and send a custom function as a parameter to
the ‘sort()’ function, all without being able to see any results along the way, as it wouldn’t work unless I
had all parts working together. I eventually tried something simple like re-ordering numbers, and that
eventually let me see what I did wrong, but before that I was taking stabs in the dark for hours.

If done again, would it be done differently and why:

Yes, I probably would have learned what variable types are being sent/received from functions like
‘getElementId’ so I would know what parameters work with them and what wouldn’t. I would also test
the built-in functions with something simple first so I know the basics of how it works, before I try it out
on the complex problem in the project.

How did previous experience help/hinder completing the tasks:

Previous experience with using C++, Java, and Ruby programming languages helped me understand the
JavaScript code, as it had the same structure and logic inherent in all of those languages. Also, using the
code by someone else in the ‘floater.js’ file helped me understand how someone else uses JavaScript,
and how it can be used to manipulate the DOM.

Most surprising thing learned:

JavaScript variables can take on the shape of pretty much anything, and they can change from integer,
to decimal, to string, to array, to reference, without complaining about using the wrong types. I’m used
to C++ always enforcing type of variable such as int, char, string, or references and pointers.

Most useful thing learned:

JavaScript’s built-in ‘sort()’ function, since in many of my programming projects, I will often have to sort
data in an array, but since I want to sort by different parameters for different objects, I had to make a
custom sort function every time. Now I can just make a simple custom function and feed it to ‘sort()’.

Map to Course Outcomes
In the original site mock-up, the ‘Other_Puzzles.png’ has a categories box that was supposed to
have links to each of the categories, which I first intended to be on separate web pages. The
JavaScript code I have written allows the user to select a category like the category links were
supposed to do, but it does it better with more options and on one web page, and the sort drop-
down menu adds to the functionality and control of the puzzle searching.

Self-assessment:

Learning Outcome Evidence of Meeting the Learning Outcome

Your Own
Assessment
of the Grade
You Believe
Would Be

Appropriate

Tutor’s
Justification
of Grading
(optional)

Apply a structured
approach to identifying
needs, interests, and
functionality of a
website.

 I have made 7 scenarios that give structured
processes of how the anticipated audience will
address their needs with the website. I also took
into account the constraints users might have,
such as different operating systems, slow
computers, and browsing the site using mobile
devices.

B

Design dynamic websites
that meet specified
needs and interests.

 The JavaScript code in the ‘floater.js’ and
‘sorter.js’ files give the website dynamic content,
which meets the needs and interests of the
personas as described in ‘Other Requirements’ in
the diary entries of Unit 4 and Unit 5.

A

Write well-structured,
easily maintained,
standards-compliant,
accessible HTML code.

 Sample1.html and Sample2.html are edited to
show my ability to write standards-compliant and
structured HTML. The errors that used to exist in
the code are listed in the learning diary under the
section “Other Requirements”.

The 11 pages I wrote for my website all have
links easily clickable on a mobile device, and are
all well-structured and standards-compliant.

B

Write well-structured,
easily maintained,
standards-compliant CSS
code to present HTML
pages in different ways.

 The CSS I wrote is either in the external CSS file,
or in a one-time internal CSS in the
‘other_puzzles.html’ page. In both, the code is
organized with comments and well-structured
using proper spacing, character case, property
ordering, and naming schemes.

It is easily maintained as the external CSS file is
less than 130 lines long, and the internal CSS only
defines styling for one selector.

It is standards compliant with WCAG 2.0 by
having no obscure or hard to read text, and
proper contrast.

A

Use JavaScript to add
dynamic content to
pages.

 I have added the JavaScript file ‘floater.js’ which
dynamically changes the positioning of the
navigation field depending on where the user’s
viewport is.

B

Critique JavaScript code
written by others,
identifying examples of
both good and bad
practice.

 I modified the code written by LearnWebCode as
described in the ‘How I have met the Learning
Outcomes’ section of the diary entry for Unit 4.

A

Select appropriate HTML,
CSS, and JavaScript code
from public repositories
of open source and free
scripts that improves
your site and that
enhances the experience
of site visitors.

 I selected JavaScript code from LearnWebCode
as described in the ‘How I have met the Learning
Outcomes’ section of the diary entry for Unit 4,
which meets the needs and interests of the
personas as described in ‘Other Requirements’ in
the diary entry for Unit 4.

C

Modify existing HTML,
CSS, and JavaScript code
to extend and alter its
functionality, and to
correct errors and cases
of poor practice.

I edited the templates given in Unit 2 as
described in the Unit 2 learning diary under the
first requirement under the section ‘Other
Requirements’. I also modified the code written
by LearnWebCode as described in the ‘How I
have met the Learning Outcomes’ section of the
diary entry for Unit 4.

C

Write well-structured,
easily maintained
JavaScript code following
accepted good practice,
including

 I have evidence of this listed below, as well as in
the Unit 5 diary entry under the ‘How I have met
the Learning Outcomes’ section, which both
describe how I checked, edited, and wrote the
JavaScript code.

B

• general appearance
and form:
commented, properly
laid out, appropriate
capitalization

 Using my Unit 4 notes on JavaScript code
conventions as well as the HTML comments
section of my Unit 2 notes, I added comments
and formatted the code according to standards. I
also used CamelCase notation, with lowercase
first letters of variables.

B

• structure: modular,
using functions and
objects effectively

I structured the code according to notes on
proper spacing given in The Landing FAQs and
the Moodle study guide. I also used 2 functions,
1 custom function, and 29 variables in the
‘sorter.js’ program code.

B

• standards-compliant

 I tested the sorting and filter elements on
Firefox, Opera, Internet Explorer, and Chrome
browsers. I also ensured that the new HTML code
and JavaScript were compliant with the XHTML
1.0 strict standards and the WCAG 2.0 standards.

B

• accessible

 The website should have an ‘A’ rating by the
WCAG 2.0 standards for the most part, and the
new changes to the website have also been
tested on an Android device.

B

Write JavaScript code
that works in all major
browsers (including IE,
Mozilla-based browsers
such as Firefox, Opera,
Konqueror, Safari,
Chrome).

 I tested the ‘sorter.js’ JavaScript code in the
Firefox, Chrome, and Opera browsers, as well as
on an android tablet.

B

Effectively debug
JavaScript code, making
use of good practice and
debugging tools.

 I used the built-in Firefox debugger, by going
line-by-line through code until it reported an
error, which I read and researched to find where
my code had a bug. I used the breakpoint feature
to stop the execution of the code at the point
where I wanted to see the execution in detail. I
also kept track of the variables in the function
scope in the variables tab on the right side of the
debugger.

B

Use JavaScript libraries
(e.g., JQuery) to create
dynamic pages.

 A, B, C, D

Use JavaScript to access
and use web services for
dynamic content (AJAX,
JSON, etc.).

 A, B, C, D

Overall A, B, C, D

	Diary entry
	Map to Course Outcomes

